Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 22(1): 212-228, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31657089

RESUMO

Ammonia released during organic matter mineralization is converted during nitrification to nitrate. We followed spatiotemporal dynamics of the nitrifying microbial community in deep oligotrophic Lake Constance. Depth-dependent decrease of total ammonium (0.01-0.84 µM) indicated the hypolimnion as the major place of nitrification with 15 N-isotope dilution measurements indicating a threefold daily turnover of hypolimnetic total ammonium. This was mirrored by a strong increase of ammonia-oxidizing Thaumarchaeota towards the hypolimnion (13%-21% of bacterioplankton) throughout spring to autumn as revealed by amplicon sequencing and quantitative polymerase chain reaction. Ammonia-oxidizing bacteria were typically two orders of magnitude less abundant and completely ammonia-oxidizing (comammox) bacteria were not detected. Both, 16S rRNA gene and amoA (encoding ammonia monooxygenase subunit B) analyses identified only one major species-level operational taxonomic unit (OTU) of Thaumarchaeota (99% of all ammonia oxidizers in the hypolimnion), which was affiliated to Nitrosopumilus spp. The relative abundance distribution of the single Thaumarchaeon strongly correlated to an equally abundant Chloroflexi clade CL500-11 OTU and a Nitrospira OTU that was one order of magnitude less abundant. The latter dominated among recognized nitrite oxidizers. This extremely low diversity of nitrifiers shows how vulnerable the ecosystem process of nitrification may be in Lake Constance as Central Europe's third largest lake.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Lagos/microbiologia , Nitrificação , Compostos de Amônio/metabolismo , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/metabolismo , Ecossistema , Oxirredução , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética
2.
Geoderma ; 348: 12-20, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31423022

RESUMO

Biochar has been reported to reduce emission of nitrous oxide (N2O) from soils, but the mechanisms responsible remain fragmentary. For example, it is unclear how biochar effects on N2O emissions are mediated through biochar effects on soil gross N turnover rates. Hence, we conducted an incubation study with three contrasting agricultural soils from Kenya (an Acrisol cultivated for 10-years (Acrisol10); an Acrisol cultivated for over 100-years (Acrisol100); a Ferralsol cultivated for over 100 years (Ferralsol)). The soils were amended with biochar at either 2% or 4% w/w. The 15N pool dilution technique was used to quantify gross N mineralization and nitrification and microbial consumption of extractable N over a 20-day incubation period at 25 °C and 70% water holding capacity of the soil, accompanied by N2O emissions measurements. Direct measurements of N2 emissions were conducted using the helium gas flow soil core method. N2O emissions varied across soils with higher emissions in Acrisols than in Ferralsols. Addition of 2% biochar reduced N2O emissions in all soils by 53 to 78% with no significant further reduction induced by addition at 4%. Biochar effects on soil nitrate concentrations were highly variable across soils, ranging from a reduction, no effect and an increase. Biochar addition stimulated gross N mineralization in Acrisol-10 and Acrisol-100 soils at both addition rates with no effect observed for the Ferralsol. In contrast, gross nitrification was stimulated in only one soil but only at a 4% application rate. Also, biochar effects on increased NH4 + immobilization and NO3 -consumption strongly varied across the three investigated soils. The variable and bidirectional biochar effects on gross N turnover in conjunction with the unambiguous and consistent reduction of N2O emissions suggested that the inhibiting effect of biochar on soil N2O emission seemed to be decoupled from gross microbial N turnover processes. With biochar application, N2 emissions were about an order of magnitude higher for Acrisol-10 soils compared to Acrisol-100 and Ferralsol-100 soils. Our N2O and N2 flux data thus support an explanation of direct promotion of gross N2O reduction by biochar rather than effects on soil extractable N dynamics. Effects of biochar on soil extractable N and gross N turnover, however, might be highly variable across different soils as found here for three typical agricultural soils of Kenya.

3.
Glob Chang Biol ; 22(9): 2963-78, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27173913

RESUMO

The carbon- and nitrogen-rich soils of montane grasslands are exposed to above-average warming and to altered precipitation patterns as a result of global change. To investigate the consequences of climatic change for soil nitrogen turnover, we translocated intact plant-soil mesocosms along an elevational gradient, resulting in an increase of the mean annual temperature by approx. 2 °C while decreasing precipitation from approx. 1500 to 1000 mm. Following three years of equilibration, we monitored the dynamics of gross nitrogen turnover and ammonia-oxidizing bacteria (AOB) and archaea (AOA) in soils over an entire year. Gross nitrogen turnover and gene levels of AOB and AOA showed pronounced seasonal dynamics. Both summer and winter periods equally contributed to cumulative annual N turnover. However, highest gross N turnover and abundance of ammonia oxidizers were observed in frozen soil of the climate change site, likely due to physical liberation of organic substrates and their rapid turnover in the unfrozen soil water film. This effect was not observed at the control site, where soil freezing did not occur due to a significant insulating snowpack. Climate change conditions accelerated gross nitrogen mineralization by 250% on average. Increased N mineralization significantly stimulated gross nitrification by AOB rather than by AOA. However, climate change impacts were restricted to the 2-6 cm topsoil and rarely occurred at 12-16 cm depth, where generally much lower N turnover was observed. Our study shows that significant mineralization pulses occur under changing climate, which is likely to result in soil organic matter losses with their associated negative impacts on key soil functions. We also show that N cycling processes in frozen soil can be hot moments for N turnover and thus are of paramount importance for understanding seasonal patterns, annual sum of N turnover and possible climate change feedbacks.


Assuntos
Mudança Climática , Nitrogênio , Microbiologia do Solo , Archaea , Bactérias , Europa (Continente) , Pradaria , Oxirredução , Estações do Ano , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...