Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(22): 27831-27848, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32399870

RESUMO

A Cu-resistant somaclonal tobacco variant (NBCu 10-8-F1, C1), its BaG mother clone (C3), and the FoP tobacco clone (C2) were cultivated at a wood preservation site on Cu-contaminated soils (239-1290 mg Cu kg-1 soil range) and an uncontaminated control site (CTRL, 21 mg Cu kg-1) to assess their shoot DW yields and potential use for bioavailable Cu stripping. The Cu concentration in the soil pore water varied between 0.15 and 0.84 mg L-1. Influences of Cu exposure and soil treatments, i.e., untreated soil (Unt), soils amended with compost and either dolomitic limestone (OMDL) or zerovalent iron grit (OMZ), on plant growth and shoot ionome were determined. All transplants survived and grew even at high total soil Cu. Shoots were harvested after 3 months (cut 1). Subsequently, bottom suckers developed and were harvested after 2 months (cut 2). Total shoot DW yield (cuts 1 + 2) varied between 0.8 and 9.9 t DW ha-1 year-1 depending on tobacco cultivars, soil treatments, and soil Cu exposure. It peaked for all cultivars in the OMDL plots at moderate Cu exposure (239-518 mg kg-1 soil), notably for the C2 plants. Cut 2 contributed for 11-43% to total shoot DW yield. Increase in shoot DW yield diluted shoot Cu concentration. At low Cu exposure, total shoot Cu removal peaked for the variant. At moderate Cu exposure, shoot Cu concentrations were similar in all cultivars, but total shoot Cu removal was highest for the C2 plants. At high Cu exposure (753-1140 mg kg-1), shoot Cu concentrations peaked for the C2 plants in the Unt plots, the C1 and C2 plants in the OMZ plot, and the C3 ones in the OMDL plots. Shoot Cu removal (in g Cu ha-1 year-1) ranged from 15.4 (C2 on the CTRL soil) to 261.3 (C2 on moderately contaminated OMDL soils). The C2 plants phytoextracted more Cu than the C1 and C3 ones in the Unt plots and in the OMDL plots at moderate Cu exposure. In the OMDL plots with high Cu exposure, shoot Cu removal was highest for the C1 plants. Soil amendments improved shoot Cu removal through increase in either shoot DW yield (OMDL-3-fold) or shoot Cu concentration (OMZ-1.3-fold). Increased shoot Cu concentration induced an ionome imbalance with increased shoot Al, Fe, B, and Mg concentrations and decreased P and K ones. Copper concentrations in plant parts varied in decreasing order: roots > leaves > inflorescence (cymes including seeds) > stem, whereas Cu removal ranked as roots > stem = leaves > inflorescence.


Assuntos
Cobre/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Solo , Nicotiana , Madeira/química
2.
Environ Sci Pollut Res Int ; 25(17): 16686-16701, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29611120

RESUMO

The potential use of a metal-tolerant sunflower mutant line for biomonitoring Cu phytoavailability, Cu-induced soil phytotoxicity, and Cu phytoextraction was assessed on a Cu-contaminated soil series (13-1020 mg Cu kg-1) obtained by fading a sandy topsoil from a wood preservation site with a similar uncontaminated soil. Morphological and functional plant responses as well as shoot, leaf, and root ionomes were measured after a 1-month pot experiment. Hypocotyl length, shoot and root dry weight (DW) yields, and leaf area gradually decreased as soil Cu exposure rose. Their dose-response curves (DRC) plotted against indicators of Cu exposure were generally well fitted by sigmoidal curves. The half-maximal effective concentration (EC50) of morphological parameters ranged between 203 and 333 mg Cu kg-1 soil, corresponding to 290-430 µg Cu L-1 in the soil pore water, and 20 ± 5 mg Cu kg-1 DW in the shoots. The EC10 for shoot Cu concentration (13-15 mg Cu kg-1 DW) coincided to 166 mg Cu kg-1 soil. Total chlorophyll content and total antioxidant capacity (TAC) were early biomarkers (EC10: 23 and 51 mg Cu kg-1 soil). Their DRC displayed a biphasic response. Photosynthetic pigment contents, e.g., carotenoids, correlated with TAC. Ionome was changed in Cu-stressed roots, shoots, and leaves. Shoot Cu removal peaked roughly at 280 µg Cu L-1 in the soil pore water.


Assuntos
Cobre/análise , Helianthus/química , Folhas de Planta/química , Poluentes do Solo/análise , Clorofila/farmacologia , Cobre/química , Monitoramento Ambiental , Fotossíntese , Solo , Poluentes do Solo/química
3.
Sci Total Environ ; 599-600: 1388-1398, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531917

RESUMO

Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.

4.
Int J Phytoremediation ; 17(11): 1005-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25581041

RESUMO

The last few decades have seen the rise of Gentle soil Remediation Options (GRO), which notably include in situ contaminant stabilization ("inactivation") and plant-based (generally termed "phytoremediation") options. For trace element (TE)-contaminated sites, GRO aim to either decrease their labile pool and/or total content in the soil, thereby reducing related pollutant linkages. Much research has been dedicated to the screening and selection of TE-tolerant plant species and genotypes for application in GRO. However, the number of field trials demonstrating successful GRO remains well below the number of studies carried out at a greenhouse level. The move from greenhouse to field conditions requires incorporating agronomical knowledge into the remediation process and the ecological restoration of ecosystem services. This review summarizes agronomic practices against their demonstrated or potential positive effect on GRO performance, including plant selection, soil management practices, crop rotation, short rotation coppice, intercropping/row cropping, planting methods and plant densities, harvest and fertilization management, pest and weed control and irrigation management. Potentially negative effects of GRO, e.g., the introduction of potentially invasive species, are also discussed. Lessons learnt from long-term European field case sites are given for aiding the choice of appropriate management practices and plant species.


Assuntos
Agricultura , Biodegradação Ambiental , Plantas/metabolismo , Poluentes do Solo/análise , Oligoelementos/análise
5.
Environ Sci Pollut Res Int ; 22(7): 5370-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25561255

RESUMO

Endophytic bacteria from roots and crude seed extracts of a Cu-tolerant population of Agrostis capillaris were inoculated to a sunflower metal-tolerant mutant line, and their influence on Cu tolerance and phytoextraction was assessed using a Cu-contaminated soil series. Ten endophytic bacterial strains isolated from surface-sterilized A. capillaris roots were mixed to prepare the root endophyte inoculant (RE). In parallel, surface-sterilized seeds of A. capillaris were crushed in MgSO4 to prepare a crude seed extract containing seed endophytes (SE). An aliquot of this seed extract was filtered at 0.2 µm to obtain a bacterial cell-free seed extract (SEF). After surface sterilization, germinated sunflower seeds were separately treated with one of five modalities: no treatment (C), immersion in MgSO4 (CMg) or SEF solutions and inoculation with RE or SE. All plants were cultivated on a Cu-contaminated soil series (13-1020 mg Cu kg(-1)). Cultivable RE strains were mostly members of the Pseudomonas genera, and one strain was closely related to Labrys sp. The cultivable SE strains belonged mainly to the Bacillus genera and some members of the Rhodococcus genera. The treatment effects depended on the soil Cu concentration. Both SE and SEF plants had a higher Cu tolerance in the 13-517 mg Cu kg(-1) soil range as reflected by increased shoot and root DW yields compared to control plants. This was accompanied by a slight decrease in shoot Cu concentration and increase in root Cu concentration. Shoot and root DW yields were more promoted by SE than SEF in the 13-114 mg Cu kg(-1) soil range, which could reflect the influence of seed-located bacterial endophytes. At intermediate soil Cu (416-818 mg Cu kg(-1) soil), the RE and CMg plants had lower shoot Cu concentrations than the control, SE and SEF plants. At high total soil Cu (617-1020 mg Cu kg(-1)), root DW yield of RE plants slightly increased and their root Cu concentration rose by up to 1.9-fold. In terms of phytoextraction efficiency, shoot Cu removal was increased for sunflower plants inoculated with crude and bacterial cell-free seed extracts by 1.3- to 2.2-fold in the 13-416 mg Cu kg(-1) soil range. Such increase was mainly driven by an enhanced shoot DW yield. The number and distribution of endophytic bacteria in the harvested sunflower tissues must be further examined.


Assuntos
Bactérias/metabolismo , Cobre/metabolismo , Endófitos/metabolismo , Helianthus/microbiologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Cobre/isolamento & purificação , Helianthus/metabolismo , Poluentes do Solo/isolamento & purificação
6.
Sci Total Environ ; 410-411: 146-53, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22000292

RESUMO

Aided phytostabilization of a Cu-contaminated soil was conducted at a wood preservation site located in southwest France using outdoor lysimeters to study leaching from the root zone and leachate ecotoxicity. The effects of Cu-tolerant plants (Agrostis gigantea L. and Populus trichocarpa x deltoides cv. Beaupré) and four amendments were investigated with seven treatments: untreated soil without plants (UNT) and with plants (PHYTO), and planted soils amended with compost (OM, 5% per air-dried soil weight), dolomitic limestone (DL, 0.2%), Linz-Donawitz slag (LDS, 1%), OM with DL (OMDL), and OM with 2% of zerovalent iron grit (OMZ). Total Cu concentrations (mgkg(-1)) in lysimeter topsoil and subsoil were 1110 and 111-153, respectively. Lysimeter leachates collected in year 3 were characterized for Al, B, Ca, Cu, Fe, Mg, Mn, P, K and Zn concentrations, free Cu ions, and pH. Total Cu concentration in leachates (mgL(-1)) ranged from 0.15±0.08 (LDS) to 1.95±0.47 (PHYTO). Plants grown without soil amendment did not reduce total Cu and free Cu ions in leachates. Lemna minor L. was used to assess the leachate phytotoxicity, and based on its growth, the DL, LDS, OM and OMDL leachates were less phytotoxic than the OMZ, PHYTO and UNT ones. The LDS leachates had the lowest Cu, Cu(2+), Fe, and Zn concentrations, but L. minor developed less in these leachates than in a mineral water and a river freshwater. Leachate Mg concentrations were in decreasing order OMDL>DL>PHYTO=OM=LDS>UNT=OMZ and influenced the duckweed growth.


Assuntos
Araceae/efeitos dos fármacos , Cobre/toxicidade , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/toxicidade , Testes de Toxicidade/métodos , Agrostis/química , França , Água Doce/análise , Água Doce/química , Populus/química , Solo/química , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...