Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 41(4): 482-487, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198772

RESUMO

With the increasing availability of single-cell transcriptomes, RNA signatures offer a promising basis for targeting living cells. Molecular RNA sensors would enable the study of and therapeutic interventions for specific cell types/states in diverse contexts, particularly in human patients and non-model organisms. Here we describe a modular, programmable system for live RNA sensing using adenosine deaminases acting on RNA (RADAR). We validate, and then expand, our basic design, characterize its performance, and analyze its compatibility with human and mouse transcriptomes. We identify strategies to boost output levels and improve the dynamic range. Additionally, we show that RADAR enables compact AND logic. In addition to responding to transcript levels, RADAR can distinguish disease-relevant sequence alterations of transcript identities, such as point mutations and fusions. Finally, we demonstrate that RADAR is a self-contained system with the potential to function in diverse organisms.


Assuntos
Edição de RNA , RNA , Animais , Humanos , Camundongos , RNA/genética , Edição de RNA/genética , Adenosina Desaminase/metabolismo , Sobrevivência Celular
3.
Nat Commun ; 12(1): 599, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500394

RESUMO

The ribosome represents a promising avenue for synthetic biology, but its complexity and essentiality have hindered significant engineering efforts. Heterologous ribosomes, comprising rRNAs and r-proteins derived from different microorganisms, may offer opportunities for novel translational functions. Such heterologous ribosomes have previously been evaluated in E. coli via complementation of a genomic ribosome deficiency, but this method fails to guide the engineering of refractory ribosomes. Here, we implement orthogonal ribosome binding site (RBS):antiRBS pairs, in which engineered ribosomes are directed to researcher-defined transcripts, to inform requirements for heterologous ribosome functionality. We discover that optimized rRNA processing and supplementation with cognate r-proteins enhances heterologous ribosome function for rRNAs derived from organisms with ≥76.1% 16S rRNA identity to E. coli. Additionally, some heterologous ribosomes undergo reduced subunit exchange with E. coli-derived subunits. Cumulatively, this work provides a general framework for heterologous ribosome engineering in living cells.


Assuntos
Escherichia coli/genética , Biossíntese de Proteínas/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Biologia Sintética/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Filogenia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Óperon de RNAr/genética
4.
Biochem Mol Biol Educ ; 44(2): 191-201, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26956943

RESUMO

An inversion polymorphism of the filamin and emerin genes at the tip of the long arm of the human X-chromosome serves as the basis of an investigative laboratory in which students learn something new about their own genomes. Long, nearly identical inverted repeats flanking the filamin and emerin genes illustrate how repetitive elements can lead to alterations in genome structure (inversions) through nonallelic homologous recombination. The near identity of the inverted repeats is an example of concerted evolution through gene conversion. While the laboratory in its entirety is designed for college level genetics courses, portions of the laboratory are appropriate for courses at other levels. Because the polymorphism is on the X-chromosome, the laboratory can be used in introductory biology courses to enhance understanding of sex-linkage and to test for Hardy-Weinberg equilibrium in females. More advanced topics, such as chromosome interference, the molecular model for recombination, and inversion heterozygosity suppression of recombination can be explored in upper-level genetics and evolution courses. DNA isolation, restriction digests, ligation, long PCR, and iPCR provide experience with techniques in molecular biology. This investigative laboratory weaves together topics stretching from molecular genetics to cytogenetics and sex-linkage, population genetics and evolutionary genetics.


Assuntos
Inversão Cromossômica/genética , Cromossomos Humanos X/genética , Ligação Genética/genética , Genômica , Polimorfismo Genético/genética , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA