Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3196, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823292

RESUMO

Pain perception can be studied as an inferential process in which prior information influences the perception of nociceptive input. To date, there are no suitable psychophysical paradigms to measure this at an individual level. We developed a quantitative sensory testing paradigm allowing for quantification of the influence of prior expectations versus current nociceptive input during perception. Using a Pavlovian-learning task, we investigated the influence of prior expectations on the belief about the varying strength of association between a painful electrical cutaneous stimulus and a visual cue in healthy subjects (N = 70). The belief in cue-pain associations was examined with computational modelling using a Hierarchical Gaussian Filter (HGF). Prior weighting estimates in the HGF model were compared with the established measures of conditioned pain modulation (CPM) and temporal summation of pain (TSP) assessed by cuff algometry. Subsequent HGF-modelling and estimation of the influence of prior beliefs on perception showed that 70% of subjects had a higher reliance on nociceptive input during perception of acute pain stimuli, whereas 30% showed a stronger weighting of prior expectations over sensory evidence. There was no association between prior weighting estimates and CPM or TSP. The data demonstrates relevant individual differences in prior weighting and suggests an importance of top-down cognitive processes on pain perception. Our new psychophysical testing paradigm provides a method to identify individuals with traits suggesting greater reliance on prior expectations in pain perception, which may be a risk factor for developing chronic pain and may be differentially responsive to learning-based interventions.


Assuntos
Dor Crônica , Limiar da Dor , Humanos , Medição da Dor , Teorema de Bayes , Percepção da Dor
2.
Eur J Pain ; 27(2): 303-315, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36451616

RESUMO

BACKGROUND: The use of high-definition transcranial direct current stimulation (HD-tDCS) has shown analgesic effects in some chronic pain patients, but limited anti-nociceptive effects in healthy asymptomatic subjects. METHODS: This double-blinded sham-controlled study assessed the effects of HD-tDCS applied on three consecutive days on central pain mechanisms in healthy participants with (N = 40) and without (N = 40) prolonged experimental pain induced by intramuscular injection of nerve growth factor into the right hand on Day 1. Participants were randomly assigned to Sham-tDCS (N = 20 with pain, N = 20 without) or Active-tDCS (N = 20 with pain, N = 20 without) targeting simultaneously the primary motor cortex and dorsolateral prefrontal cortex for 20 min with 2 mA stimulation intensity. Central pain mechanisms were assessed by cuff algometry on the legs measuring pressure pain sensitivity, temporal summation of pain (TSP) and conditioned pain modulation (CPM), at baseline and after HD-tDCS on Day 2 and Day 3. Based on subject's assessment of received HD-tDCS (sham or active), they were effectively blinded. RESULTS: Compared with Sham-tDCS, Active-tDCS did not significantly reduce the average NGF-induced pain intensity. Tonic pain-induced temporal summation at Day 2 and Day 3 was significantly lower in the NGF-pain group under Active-tDCS compared to the pain group with Sham-tDCS (p ≤ 0.05). No significant differences were found in the cuff pressure pain detection/tolerance thresholds or CPM effect across the 3 days of HD-tDCS in any of the four groups. CONCLUSION: HD-tDCS reduced the facilitation of TSP caused by tonic pain suggesting that efficacy of HD-tDCS might depend on the presence of sensitized central pain mechanisms.


Assuntos
Neuralgia , Estimulação Transcraniana por Corrente Contínua , Humanos , Fator de Crescimento Neural , Neuralgia/etiologia , Limiar da Dor , Medição da Dor , Método Duplo-Cego , Córtex Pré-Frontal
3.
J Pain ; 23(7): 1220-1233, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202795

RESUMO

High definition transcranial direct current stimulation (HD-tDCS) targeting brain areas involved in pain processing has shown analgesic effects in some chronic pain conditions, but less modulatory effect on mechanical and thermal pain thresholds in asymptomatic subjects. This double-blinded study assessed the HD-tDCS effects on experimental pain and hyperalgesia maintained for several days in healthy participants. Hyperalgesia and pain were assessed during three consecutive days following provocation of experimental pain (nerve growth factor injected into the right-hand muscle) and daily HD-tDCS sessions (20-minutes). Forty subjects were randomly assigned to Active-tDCS targeting primary motor cortex and dorsolateral prefrontal cortex simultaneously or Sham-tDCS. Tactile and pressure pain sensitivity were assessed before and after each HD-tDCS session, as well as the experimentally-induced pain intensity scored on a numerical rating scale (NRS). Subjects were effectively blinded to the type of HD-tDCS protocol. The Active-tDCS did not significantly reduce the NGF-induced NRS pain score (3.5±2.4) compared to Sham-tDCS (3.9±2.0, P > .05) on day 3 and both groups showed similarly NGF-decreased pressure pain threshold in the right hand (P < .001). Comparing Active-tDCS with Sham-tDCS, the manifestation of pressure hyperalgesia was delayed on day 1, and an immediate (pre-HD-tDCS to post-HD-tDCS) reduction in pressure hyperalgesia was found across all days (P < .05). PERSPECTIVE: The non-significant differences between Active-tDCS and Sham-tDCS on experimental prolonged pain and hyperalgesia suggest that HD-tDCS has no effect on moderate persistent experimental pain. The intervention may still have a positive effect in more severe pain conditions, with increased intensity, more widespread distribution, or increased duration and/or involving stronger affective components.


Assuntos
Dor Crônica , Estimulação Transcraniana por Corrente Contínua , Doença Crônica , Método Duplo-Cego , Humanos , Hiperalgesia/terapia , Fator de Crescimento Neural , Estimulação Transcraniana por Corrente Contínua/métodos
4.
Scand J Pain ; 22(3): 622-630, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35130374

RESUMO

OBJECTIVES: Anodal transcranial direct current stimulation (tDCS) of primary motor cortex (M1) and cathodal of the primary sensory cortex (S1) have previously shown to modulate the sensory thresholds when administered with the reference electrode located over the contralateral supraorbital area (SO). Combining the two stimulation paradigms into one with simultaneous stimulation of the two brain areas (M1 + S1 - tDCS) may result in a synergistic effect inducing a prominent neuromodulation, noticeable in the pain thresholds. The aim of this study is to assess the efficacy of the novel M1 + S1 - tDCS montage compared to sham-stimulation in modulating the pain thresholds in healthy adults. METHODS: Thirty-nine (20 males) subjects were randomly assigned to either receiving 20 min. active M1 + S1 - tDCS or sham tDCS in a double-blinded single session study. Thermal and mechanical pain thresholds were assessed before and after the intervention. RESULTS: There were no significant differences in the pain thresholds within either group, or between the M1 + S1 - tDCS group and the Sham-tDCS group (p>0.05), indicating that the intervention was ineffective in inducing a neuromodulation of the somatosensory system. CONCLUSIONS: Experimental investigations of novel tDCS electrode montages, that are scientifically based on existing studies or computational modelling, are essential to establish better tDCS protocols. Here simultaneous transcranial direct current stimulation of the primary motor cortex and primary sensory cortex showed no effect on the pain thresholds of the neck musculature in healthy subjects. This tDCS montage may have been ineffective due to how the electrical field reaches the targeted neurons, or may have been limited by the design of a single tDCS administration. The study adds to the existing literature of the studies investigating effects of new tDCS montages with the aim of establishing novel non-invasive brain stimulation interventions for chronic neck pain rehabilitation. North Denmark Region Committee on Health Research Ethics (VN-20180085) ClinicalTrials.gov (NCT04658485).


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Adulto , Método Duplo-Cego , Humanos , Masculino , Córtex Motor/fisiologia , Limiar da Dor/fisiologia , Limiar Sensorial , Estimulação Transcraniana por Corrente Contínua/métodos
5.
Pain ; 162(6): 1659-1668, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449508

RESUMO

ABSTRACT: High-definition transcranial direct current stimulation (HD-tDCS) of brain areas related to pain processing may provide analgesic effects evident in the sensory detection and pain thresholds. The somatosensory sensitivity was assessed after HD-tDCS targeting the primary motor cortex (M1) and/or the dorsolateral prefrontal cortex (DLPFC). Eighty-one (40 females) subjects were randomly assigned to 1 of 4 anodal HD-tDCS protocols (20 minutes) applied on 3 consecutive days: Sham-tDCS, DLPFC-tDCS, M1-tDCS, and DLPFC&M1-tDCS (simultaneous transcranial direct current stimulation [tDCS] of DLPFC and M1). Subjects and experimenter were blinded to the tDCS protocols. The somatosensory sensitivity were assessed each day, before and after each tDCS by detection and pain thresholds to thermal and mechanical skin stimulation, vibration detection thresholds, and pressure pain thresholds. Subjects were effectively blinded to the protocol, with no significant difference in rates of whether they received real or placebo tDCS between the 4 groups. Compared with the Sham-tDCS, none of the active HD-tDCS protocols caused significant changes in detection or pain thresholds. Independent of tDCS protocols, pain and detection thresholds except vibration detection were increased immediately after the first tDCS protocol compared with baseline (P < 0.05). Overall, the active stimulation protocols were not able to induce significant modulation of the somatosensory thresholds in this healthy population compared with sham-tDCS. Unrelated to the HD-tDCS protocol, a decreased sensitivity was found after the first intervention, indicating a placebo effect or possible habituation to the quantitative sensory testing assessments. These findings add to the increasing literature of null findings in the modulatory effects of HD-tDCS on the healthy somatosensory system.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Método Duplo-Cego , Feminino , Humanos , Limiar da Dor , Córtex Pré-Frontal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...