Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ceska Slov Farm ; 72(1): 37-44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858978

RESUMO

The aim of the study was to point out the contribution of new invasive therapeutic procedures in the treatment of advanced stages of Parkinson's disease (PD) in comparison with classical oral pharmacotherapy. Data originated from a group of 43 patients with PD, 39% (17) with classic treatment, 23% (10) with intestinal gel of methyl ester levodopa (Duodopa), 19% (8) of patients were using subcutaneous delivery of apomorphine (APO) and the same quantity of patients had undergone deep brain stimulation (DBS). Majority of patients had advanced stages of PD, stage 4, by standards of Hoehn and Yahr scale (Hoehn and Yahr, 1967). Research observed improvement in majority of patients with novel treatments. A positive effect was also noted in the reduced need for oral therapy, where there was a significant decrease in all new therapies. Benefits were observed in the amount of antiparkinsonic drugs taken per os, where we observed reduction in all new therapies. A positive effect of the new therapeutic approaches in reducing "off" periods in patients has also been noted. In the case of Duodopa and DBS, the "off" period was shortened up to 50% and in the apomorphine pump up to 40%. Patients also reported reduction of some symptoms like rigidity, tremor and bradykinesis while dyskinesis still remains suba challenge. On the basis of the obtained results, it can be concluded that new therapeutic procedures for PCh will make it possible to manage symptoms typical of advanced stages of the disease, which without these procedures would lead to disability, which is the main reason for their indication. However, in early stages, well responding patients or in slow progressing disease oral antiparkinsonics are remaining as golden standard of treatment. This is not just due to good response but also because these classic drug formulations are significantly less expensive. In Slovakia, novel treatments are accessible through healthcare insurance only after secondary revision by insurance company doctors.


Assuntos
Doença de Parkinson , Humanos , Apomorfina , Administração Oral , Ésteres , Eslováquia
2.
Can J Physiol Pharmacol ; 95(4): 328-332, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28103057

RESUMO

The main aim of the present review is to provide at first a short survey of the basic anatomical description of sensory ganglion neurons in relation to cell size, conduction velocity, thickness of myelin sheath, and functional classification of their processes. In addition, we have focused on discussing current knowledge about the distribution pattern of neuronal nitric oxide synthase containing sensory neurons especially in the dorsal root ganglia in different animal species; hence, there is a large controversy in relation to interpretation of the results dealing with this interesting field of research.


Assuntos
Gânglios Espinais/citologia , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Neurônios Aferentes/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gânglios Espinais/anatomia & histologia , Fibras Nervosas Mielinizadas/classificação , Fibras Nervosas Amielínicas/classificação , Neurônios Aferentes/classificação , Neurônios Aferentes/fisiologia , Substância P/metabolismo
3.
Acta Histochem ; 116(5): 736-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24560455

RESUMO

The presence of nitrergic cells in the prefrontal cortex has been confirmed, however little is known about the postnatal development of these cells. Nitrergic neurons were studied histochemically by using NADPH-diaphorase staining in the prefrontal cortex of male Wistar rats from postnatal day 7-21 (P7-21). Neuronal NADPH-diaphorase is a nitric oxide synthase that provides a specific histochemical marker for neurons producing nitric oxide (NO). NO acts as a neurotransmitter and intracellular signaling molecule in the nervous system. We observed in 7 day old rats NADPH-d containing neurons that were intensely stained. These neurons were bipolar with a short dendrite with average length of 23 µm. During the second postnatal week, the neurons were mainly bipolar and were rarely multipolar. By P14 the cells were located primarily in cortical layers III-VI. Nitrergic neurons of the 21 day old rats were histochemically identified as multipolar cells with long radial extending dendrites. Dendrites of neurons in 14 and 21 day old rats were a similar length with an average of 57 µm. These results suggest that nitrergic neurons differentiate during a relatively short period of time and reach their structural maturity by the end of the second week of postnatal development.


Assuntos
Neurônios Nitrérgicos/citologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Diferenciação Celular , Histocitoquímica , Masculino , NADPH Desidrogenase/metabolismo , Neurônios Nitrérgicos/enzimologia , Córtex Pré-Frontal/enzimologia , Ratos , Ratos Wistar
4.
Cell Mol Neurobiol ; 29(6-7): 879-86, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19291395

RESUMO

AIM: Spinal cord transection interrupts supraspinal input and leads to the development of prominent spasticity. In this study, we investigated the effect of rat spinal cord transection performed at low thoracic level on changes in (i) neuronal nitric oxide synthase immunoreactivity (nNOS-IR), and (ii) the level of neuronal nitric oxide synthase (nNOS) protein in the neuronal circuitry that underlies tail-flick reflex. METHODS: nNOS-IR was detected by immunohistochemistry and the level of nNOS protein was determined by the Western blot analysis. The tail-flick reflex was tested by a noxious thermal stimulus delivered to the tail of experimental animals. After surgery, experimental animals survived for 7 days. RESULTS: A significant increase in the level of nNOS protein was found 1 week after thoracic transection in the L2-L6 segments. Immunohistochemical analysis discovered that this increase may be a result of (1) a high nNOS-IR in a large number of axons, located predominantly in the dorsal columns (DCs) of lower lumbosacral segments, and (2) a slight increase of density in nNOS-IR in motoneurons. On the other hand the number of nNOS-IR neurons in the superficial dorsal horn and in area surrounded the central canal (CC) was greatly reduced. The tail-flick response was immediate in animals after spinal transection, while control rats responded to thermal stimulus with a slight delay. However, the tail-flick latency in experimental animals was significantly higher than in control. CONCLUSION: These data indicate that transection of the spinal cord significantly influences nNOS-IR in neuronal circuitry that underlies the tail-flick reflex activity.


Assuntos
Óxido Nítrico Sintase/metabolismo , Reflexo/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Cauda/fisiologia , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Óxido Nítrico Sintase Tipo I , Medição da Dor , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/metabolismo , Vértebras Torácicas
5.
Int J Mol Med ; 21(4): 413-21, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18360686

RESUMO

Ca2+-dependent and Ca2+-independent nitric oxide synthase (NOS) activity, and neuronal and inducible NOS immunoreactivity (nNOS-IR and iNOS-IR), were investigated in the rabbit lower lumbar spinal cord after i) sciatic nerve transection and survival of experimental animals for 2 weeks, ii) treatment of animals with N-nitro-L-arginine (NNLA), an inhibitor of nNOS dosed at 20 mg/b.w. for 12 days, and iii) after treatment of animals with the inducible NOS (iNOS) inhibitor, aminoguanidine, dosed at 100 mg/b.w. for 4 and 12 days. Our attention was focused on the dorsal part of L4-L6 segments receiving sensory inputs from the sciatic nerve, and on the ventral part consisting of sciatic nerve motor neurons. Sciatic nerve transection increased Ca2+-dependent NOS activity and the density of nNOS in the dorsal part of the spinal cord on the ipsilateral side. NNLA treatment effectively reduced nNOS-IR in both the dorsal horn and the dorsal column, and decreased Ca2+-dependent NOS activity in the lower lumbar segments. Immunocytochemical analysis disclosed the up-regulation of iNOS immunoreactive staining after peripheral axotomy in alpha-motoneurons. The changes in iNOS expression and Ca2+-independent NOS activity were not significantly corrected by aminoguanidine treatment for 4 days. Long-lasting iNOS inhibition decreased Ca2+-independent NOS activity, but caused motor neuron degeneration and mediated small necrotic foci in the ventrolateral portion of the ventral horn. The results of the present study provide evidence that constitutive NOS inhibition by NNLA is more effective than specific long-lasting inhibition of iNOS by aminoguanidine treatment.


Assuntos
Guanidinas/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Nitroarginina/farmacologia , Nervo Isquiático/lesões , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Animais , Axotomia , Cálcio , Inibidores Enzimáticos/farmacologia , Feminino , Imuno-Histoquímica , Masculino , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Coelhos , Nervo Isquiático/fisiologia , Distribuição Tecidual
6.
Eur J Pain ; 12(2): 172-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17553714

RESUMO

Chronic constriction injury (CCI) of the sciatic nerve in rats evokes c-Fos expression at spinal cord level. Using immunohistochemical methods we studied changes in c-Fos expression in the brain stem area, which is suggested as one of the major targets of projection neurons in the superficial dorsal horn laminae, i.e., the parabrachial area. During the first week following injury, the animals developed tactile allodynia. At this time we found an increase of c-Fos positive neurons in the parabrachial area, mainly in the pontine part where the group of c-Fos immunoreactive neurons was present in the dorsal part of lateral parabrachial subnuclei. The number of c-Fos positive neurons gradually decreased up to 14 days following CCI. The specific activation of brain stem neurons during onset of mechanical allodynia could underlie the changes in central nociceptive processing following peripheral nerve injury.


Assuntos
Mesencéfalo/metabolismo , Ponte/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Nervo Isquiático/lesões , Animais , Hiperalgesia/etiologia , Imuno-Histoquímica , Ligadura , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Ferimentos e Lesões/complicações , Ferimentos e Lesões/metabolismo
7.
Cell Mol Neurobiol ; 27(4): 475-504, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17387607

RESUMO

1. The aim of the present study was to examine the distribution of unmyelinated, small-diameter myelinated neuronal nitric oxide synthase immunoreactive (nNOS-IR) axons and large-diameter myelinated neuronal nitric oxide synthase and parvalbumin-immunoreactive (PV-IR) axons in the dorsal funiculus (DF) of sacral (S1-S3) and lumbar (L1-L7) segments of the dog.2. nNOS and PV immunohistochemical methods were used to demonstrate the presence of nNOS-IR and PV-IR in the large-diameter myelinated, presumed to be proprioceptive, axons in the DF along the lumbosacral segments.3. Fiber size and density of nNOS-IR and PV-IR axons were used to compartmentalize the DF into five compartments (CI-CV). The first compartment (CI) localized in the lateralmost part of the DF, containing both unmyelinated and small-diameter myelinated nNOS-IR axons, is homologous with the dorsolateral fasciculus, or Lissauer tract. The second compartment (CII) having similar fiber organization as CI is situated more medially in sacral segments. Rostrally, in lower lumbar segments, CII moves more medially, and at upper lumbar level, CII reaches the dorsomedial angle of the DF and fuses with axons of CIV. CIII is the largest in the DF and the only one containing large-diameter myelinated nNOS-IR and PV-IR axons. The largest nNOS-IR and PV-IR axons of CIII (8.0-9.2 mum in diameter), presumed to be stem Ia proprioceptive afferents, are located in the deep portion of the DF close to the dorsal and dorsomedial border of the dorsal horn. The CIV compartment varies in shape, appearing first as a small triangular area in S3 and S2 segments, homologous with the Philippe-Gombault triangle. Beginning at S1 level, CIV acquires a more elongated shape and is seen throughout the lumbar segments as a narrow band of fibers extending just below the dorsal median septum in approximately upper two-thirds of the DF. The CV is located in the basal part of the DF. In general, CV is poor in nNOS-IR fibers; among them solitary PV-IR fibers are seen.4. The analysis of the control material and the degeneration of the large- and medium-caliber nNOS-IR fibers after unilateral L7 and S1 dorsal rhizotomy confirmed that large-caliber nNOS-IR and and PV-IR axons, presumed to be proprioceptive Ia axons, and their ascending and descending collaterals are present in large number in the DF of the lumbosacral intumescence. However, in the DF of the upper lumbar segments, the decrease in the number of nNOS-IR and PV-IR fibers is quite evident.


Assuntos
Região Lombossacral , Neurônios Aferentes/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Parvalbuminas/metabolismo , Medula Espinal/metabolismo , Animais , Compartimento Celular , Contagem de Células , Cães , Feminino , Imuno-Histoquímica , Masculino , Modelos Biológicos , Fibras Nervosas/metabolismo , Neurônios Aferentes/citologia , Rizotomia , Distribuição Tecidual
8.
Cell Mol Neurobiol ; 26(7-8): 1367-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16786429

RESUMO

1. The present study was designed to examine the nitric oxide synthase activities (constitutive and inducible) in the site of injury in response to Th10-Th11 spinal cord hemisection and, to determine whether unilateral disconnection of the spinal cord influences the NOS pools on the contra- and ipsilateral sides in segments located far away from the epicentre of injury. 2. A radioassay detection was used to determine Ca(2+)-dependent and inducible nitric oxide synthase activities. Somal, axonal and neuropil neuronal nitric oxide synthase was assessed by immunocytochemical study. A quantitative assessment of neuronal nitric oxide synthase immunoreactivity was made by an image analyser. The level of neuronal nitric oxide synthase protein was measured by the Western blot analysis. 3. Our data show the increase of inducible nitric oxide synthase activity and a decrease of Ca(2+)-dependent nitric oxide synthase activity in the injured site analysed 1 and 7 days after surgery. In segments remote from the epicentre of injury the inducible nitric oxide synthase activity was increased at both time points. Ca(2+)-dependent nitric oxide synthase activity had decreased in L5-S1 segments in a group of animals surviving for 7 days. A hemisection performed at thoracic level did not cause significant difference in the nitric oxide synthase activities and in the level of neuronal nitric oxide synthase protein between the contra- and ipsilateral sides in C6-Th1 and L5-S1 segments taken as a whole. Significant differences were observed, but only when the spinal cord was analysed segment by segment, and/or was divided into dorsal and ventral parts. The cell counts in the cervicothoracic (C7-Th1) and lumbosacral (L5-S1) enlargements revealed changes in neuronal nitric oxide synthase immunoreactivity on the ipsilateral side of the injury. The densitometric area measurements confirmed the reduction of somal, neuropil and axonal neuronal nitric oxide synthase immunoreactive staining in the ventral part of rostrally oriented segments. 4. Our findings provide evidence that the changes in nitric oxide synthase pools are limited not only to impact zone, but spread outside the original lesion. The regional distribution of nitric oxide synthase activity and neuronal nitric oxide synthase immunoreactivity, measured segment by segment shows that nitric oxide may play a significant role in the stepping cycle in the quadrupeds.


Assuntos
Óxido Nítrico Sintase/metabolismo , Traumatismos da Medula Espinal/enzimologia , Medula Espinal/enzimologia , Animais , Feminino , Região Lombossacral/patologia , Masculino , Óxido Nítrico Sintase Tipo I/metabolismo , Coelhos , Traumatismos da Medula Espinal/mortalidade , Traumatismos da Medula Espinal/patologia , Vértebras Torácicas/patologia
9.
Cell Mol Neurobiol ; 26(7-8): 1311-25, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16783526

RESUMO

1. To vicariously investigate the nitric oxide synthase (NOS) production after spinal cord injury, NADPH-d histochemistry was performed on the selected peripheral nerves of adult rabbits 7 days after ischemia. The effect of transient spinal cord ischemia (15 min) on possible degenerative changes in the motor and mixed peripheral nerves of Chinchilla rabbits was evaluated. 2. The NADPH-diaphorase histochemistry was used to determine NADPH-diaphorase activity after ischemia/reperfusion injury in radial nerve and mediane nerve isolated from the fore-limb and femoral nerve, saphenous nerve and sciatic nerve separated from the hind-limb of rabbits. The qualitative analysis of the optical density of NADPH-diaphorase in selected peripheral nerves demonstrated different frequency of staining intensity (attained by UTHSCSA Image Tool 2 analysis for each determined nerve). 3. On the seventh postsurgery day, the ischemic spinal cord injury resulted in an extensive increase of NADPH-d positivity in isolated nerves. The transient ischemia caused neurological disorders related to the neurological injury--a partial paraplegia. The sciatic, femoral, and saphenous nerves of paraplegic animals presented the noticeable increase of NADPH-d activity. The mean of NADPH-diaphorase intensity staining per unit area ranged from 134.87 (+/-32.81) pixels to 141.65 (+/-35.06) pixels (using a 256-unit gray scale where 0 denotes black, 256 denotes white) depending on the determined nerve as the consequence of spinal cord ischemia. The obtained data were compared to the mean values of staining intensity in the same nerves in the limbs of control animals (163.69 (+/-25.66) pixels/unit area in the femoral nerve, 173.00 (+/-32.93) pixels/unit area in saphenous nerve, 186.01 (+/-29.65) pixels/unit area in sciatic nerve). Based on the statistical analysis of the data (two-way unpaired Mann-Whitney test), a significant increase (p< or =0.05) of NADPH-d activity in femoral and saphenous nerve, and also in sciatic nerve (p< or =0.001) has been found. On the other hand, there was no significant difference between the histochemically stained nerves of fore-limbs after ischemia/reperfusion injury and the same histochemically stained nerves of fore-limbs in control animals. 4. The neurodegenerative changes of the hind-limbs, characterized by damage of their motor function exhibiting a partial paraplegia after 15 min spinal cord ischemia and subsequent 7 days of reperfusions resulted in the different sensitivity of peripheral nerves to transient ischemia. Finally, we suppose that activation of NOS indirectly demonstrable through the NADPH-d study may contribute to the explanation of neurodegenerative processes and the production of nitric oxide could be involved in the pathophysiology of spinal cord injury by transient ischemia.


Assuntos
NADPH Desidrogenase/metabolismo , Nervos Periféricos/enzimologia , Traumatismo por Reperfusão/enzimologia , Isquemia do Cordão Espinal/enzimologia , Animais , Feminino , Imuno-Histoquímica , Masculino , Coelhos
10.
Cell Mol Neurobiol ; 26(7-8): 1265-79, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16773444

RESUMO

1. Nitric oxide (NO) is highly reactive gaseous molecule to which many physiological and pathological functions have been attributed in the central (CNS) and peripheral (PNS) nervous system. The present investigation was undertaken to map the distribution pattern of the enzyme responsible for the synthesis of NO, nitric oxide synthase (NOS), and especially its neuronal isoform (nNOS) in the population of primary afferent neurons of the trigeminal ganglion (TG) and mesencephalic trigeminal nucleus (MTN) of the rabbit. 2. In order to identify neuronal structures expressing nNOS we applied histochemistry to its specific histochemical marker nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd). 3. We found noticeable amount of NADPHd-exhibiting primary afferent neurons in TG of the rabbit under physiological conditions. The intensity of the histochemical reaction was highly variable reaching the maximum in the subpopulation of small-to-medium-sized neurons. The large-sized neurons were only weakly stained or actually did not posses any NADPHd-activity. In addition, NADPHd-positive nerve fibers were detected between clusters of the ganglionic cells and in the peripheral branches of the trigeminal nerve (TN). NADPHd-exhibiting MTN neurons were noticed in the whole rostrocaudal extent of the nucleus even though some differences were found concerning the ratio of NADPHd-positive versus NADPHd-negative cell bodies. Similarly, we observed striking diversity in the intensity of NADPHd histochemical reaction in the subpopulations of small-, medium-, and large-sized MTN neurons. 4. The predominant localization of NADPHd in the subpopulation of small-to-medium-sized TG neurons which are generally considered to be nociceptive suggests that NO probably takes part in the modulation of nociceptive inputs from the head and face. Furthermore, we tentatively assume that NADPHd-exhibiting MTN neurons probably participate in transmission and modulation of the proprioceptive impulses from muscle spindles of the masticatory muscles and mechanoreceptors of the periodontal ligaments and thus provide sensory feedback of the masticatory reflex arc.


Assuntos
Mesencéfalo/enzimologia , NADPH Desidrogenase/metabolismo , Neurônios Aferentes/enzimologia , Coelhos , Gânglio Trigeminal/enzimologia , Núcleos do Trigêmeo/enzimologia , Animais , Feminino , Masculino , Mesencéfalo/citologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Gânglio Trigeminal/citologia , Núcleos do Trigêmeo/citologia
11.
Cell Mol Neurobiol ; 26(7-8): 1281-94, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16691443

RESUMO

1. This study was performed to compare both the Ca(2+)-dependent nitric oxide synthase (NOS) activity and the neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the rabbit lumbosacral spinal cord after 15 min abdominal aorta occlusion (ischemia in vivo) and oxygen-glucose deprivation of the spinal cord slices for 45 and 60 min (ischemia in vitro). All ischemic periods were followed by 15, 30 and 60 min reoxygenation in vitro. 2. Catalytic nitric oxide synthase activity was determined by the conversion of (L)-[(14)C]arginine to (L)-[(14)C]citrulline. Neuronal nitric oxide synthase immunoreactivity in the spinal cord was detected by incubation of sections with polyclonal sheep-nNOS-primary antibody and biotinylated anti-sheep secondary antibody. 3. Our results show that ischemia in vivo and the oxygen-glucose deprivation of spinal cord slices in vitro result in a time-dependent loss of constitutive NOS activity with a partial restoration of enzyme activity during 15 and 45 min ischemia followed by 30 min of reoxygenation. A significant decrease of enzyme activity was found during 60 min ischemia alone, which persisted up to 1 h of oxygen-glucose restoration. The upregulation of neuronal nitric oxide synthase was observed in the ventral horn motoneurons after all ischemic periods. The remarkable changes in optical density of neuronal nitric oxide synthase immunoreactive motoneurons were observed after 45 and 60 min ischemia in vitro followed by 30 and 60 min reoxygenation. 4. Our results suggest that the oxygen-glucose deprivation followed by reoxygenation in the spinal cord is adequately sensitive to monitor ischemia/reperfusion changes. It seems that 15 min ischemia in vivo and 45 min ischemia in vitro cause reversible changes, while the decline of Ca(2+)-dependent nitric oxide synthase activity after 60 min ischemic insult suggests irreversible alterations.


Assuntos
Glucose/deficiência , Óxido Nítrico Sintase/metabolismo , Isquemia do Cordão Espinal/enzimologia , Medula Espinal/enzimologia , Animais , Hipóxia Celular/fisiologia , Feminino , Imuno-Histoquímica , Masculino , Óxido Nítrico Sintase/análise , Óxido Nítrico Sintase Tipo I/metabolismo , Técnicas de Cultura de Órgãos , Coelhos , Ensaio Radioligante
12.
Cell Mol Neurobiol ; 26(7-8): 1387-412, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16724275

RESUMO

1. The aim of the present study was to examine the occurrence of the neuronal nitric oxide synthase immunoreactivity in the stretch reflex circuit pertaining to the quadriceps femoris muscle in the dog. 2. Immunohistochemical processing for neuronal nitric oxide synthase and histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase were used to demonstrate the presence of neuronal nitric oxide synthase in the proprioceptive afferents issuing in the quadriceps femoris muscle. The retrograde tracer Fluorogold injected into the quadriceps femoris muscle was used to detect the proprioceptive afferents and their entry into the L5 and L6 dorsal root ganglia. 3. A noticeable number of medium-sized intensely nitric oxide synthase immunolabelled somata (1000-2000 microm(2) square area) was found in control animals in the dorsolateral part of L5 and L6 dorsal root ganglia along with large-caliber intraganglionic nitric oxide synthase immunolabelled fibers, presumed to be Ia axons. Before entering the dorsal funiculus the large-caliber nitric oxide synthase immunolabelled fibers of the L5 and L6 dorsal roots formed a massive medial bundle, which upon entering the dorsal root entry zone reached the dorsolateral part of the dorsal funiculus and were distributed here in a funnel-shaped fashion. The largest nitric oxide synthase immunolabelled fibers, 8.0-9.2 microm in diameter, remained close to the dorsal horn, while medium-sized fibers were seen dispersed across the medial portion of the dorsal funiculus. Single, considerably tapered nitric oxide synthase immunolabelled fibers, 2.2-4.6 microm in diameter, were seen to proceed in ventrolateral direction until they reached the mediobasal portion of the dorsal horn and the medial part of lamina VII. In lamina IX, only short fragments of nitric oxide synthase immunoreactive fibers and their terminal ramifications could be seen. Nitric oxide synthase immunolabelled terminals varying greatly in size were identified in control material at the base of the dorsal horn, in the vicinity of motoneurons ventrally and ventrolaterally in L5 and L6 segments and in Clarke's column of L3 and L4 segments. Injections of the retrograde tracer Fluorogold into the quadriceps femoris muscle and cut femoral nerve, combined with nitric oxide synthase immunohistochemistry of the L5 and L6 dorsal root ganglia, confirmed the existence of a number of medium-sized nitric oxide synthase immunoreactive and Fluorogold-fluorescent somata presumed to be proprioceptive Ia neurons (1000-2000 microm(2) square area) in the dorsolateral part of both dorsal root ganglia. L5 and L6 dorsal rhizotomy caused a marked depletion of nitric oxide synthase immunoreactivity in the medial bundle of the L5 and L6 dorsal roots and in the dorsal funiculus of L5 and L6 segments. 4. The analysis of control material and the degeneration of the large- and medium-caliber nitric oxide synthase immunoreactive Ia fibers in the dorsal funiculus of L5 and L6 segments confirmed the presence of nitric oxide synthase in the afferent limb of the monosynaptic Ia-motoneuron stretch reflex circuit related to the quadriceps femoris muscle.


Assuntos
Neurônios Aferentes/fisiologia , Neurônios Nitrérgicos/fisiologia , Propriocepção/fisiologia , Músculo Quadríceps/inervação , Reflexo Monosináptico/fisiologia , Reflexo de Estiramento/fisiologia , Animais , Cães , Feminino , Nervo Femoral/metabolismo , Masculino , Modelos Biológicos , NADPH Desidrogenase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Músculo Quadríceps/fisiologia , Rizotomia
13.
Cell Mol Neurobiol ; 26(1): 17-44, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16633899

RESUMO

In this study, immunohistochemistry for neuronal nitric oxide synthase (bNOS-IR), nicotinamide adenine dinucleotide phosphate diaphorase histochemistry (NADPHd) and nitric oxide synthase radioassay were used to study the occurrence, number and distribution pattern of nitric oxide synthesizing neurons in the lumbar (L1-L7) and sacral (S1-S3) dorsal root ganglia of the dog. Nitric oxide synthase immunolabelling was present in a large number of small- (area <1,000 microm(2)) and medium-sized (area 1,000-2,000 microm(2)) as well as in a limited number of large-sized (area >2000 microm(2)) neurons. Although neuronal nitric oxide synthase immunolabelling and histochemical staining provided intense staining of multiple small- and medium-sized neurons in all lumbar and sacral dorsal root ganglia, immuno-labelled or histochemically stained somata exhibited little topographic distribution in individual dorsal root ganglia. Great heterogeneity was noticed in the immunolabelling of medium-sized nitric oxide synthase immunopositive neurons ranging from lightly immuno-labelled somata to heavily immunoreactive ones with completely obscured nuclei. Both staining procedures proved to be highly effective in visualizing intraganglionic fibers of various diameters. In general, the largest fibers revealed at the peripheral end of lumbar and sacral dorsal root ganglia were larger, 6.49-9.35 mum in diameter, while those running centrally and proceeding into the dorsal roots were about 30% reduced, ranging between 5.32 and 8.67 microm in diameter. Peripherally, the occurrence of nitric oxide synthase detected in axonal profiles, and confirmed histochemically, in the specimens of the femoral and sciatic nerves, is the first indication of the presence of nitric oxide synthase in the peripheral processes of somata located in L4-S2 dorsal root ganglia. Large and thin central nitric oxide synthase immunoreactive processes of L1-S3 dorsal root ganglion neurons segregate shortly before entering the spinal cord, the former making a massive medial bundle in the dorsal root accompanied by a slim lateral bundle penetrating Lissauer's tract. Quantitative assessment of the distribution of bNOS-IR and/or NADPHd-stained neurons showed a peculiar pattern in relation to spinal levels. Apparent incongruity was found in the total number of NADPHd-stained versus bNOS-IR neurons, demonstrating a clear prevalence of small bNOS-IR somata in all lumbar ganglia, while medium-sized NADPHd-stained somata clearly prevailed all along the rostrocaudal axis with a peak in L5 ganglion. While the number of small bNOS-IR neurons clearly outnumbered NADPHd-stained and NADPHd-unstained somata in S1-S3 ganglia, an inverse relation appeared comparing the total number of medium-sized NADPHd-stained and NADPHd-unstained somata compared with the number of moderate and intense bNOS-IR neurons. Densitometry of bNOS-IR and NADPHd-stained neurons in lumbar and sacral ganglia revealed two distinct subsets of densitometric profiles, one relating to more often found medium-sized bNOS immuno-labelled and the other, characteristic for moderately bNOS immunoreactive somata of the same cell size. Considerable differences in catalytic nitric oxide synthase activity, determined by conversion of [(3)H]arginine to [(3)H]citrulline were obtained in lumbosacral dorsal root ganglia all along the lumbosacral intumescence, the lowest (0.898+/- 0.2 dpm/min/microg protein) being in the L4 dorsal root ganglion and the highest (4.194+/-0.2 dpm/min/microg protein) in the S2 dorsal root ganglion.


Assuntos
Gânglios Espinais/enzimologia , Vértebras Lombares , Óxido Nítrico Sintase Tipo I/metabolismo , Sacro , Animais , Cães , Gânglios Espinais/citologia , Imuno-Histoquímica , NADPH Desidrogenase/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Ensaio Radioligante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...