Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 46(17): 5513-5517, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28317966

RESUMO

The effect of proximal Zn halides on Ni-catalyzed ethylene polymerization is reported in this work. A series of (NON)NiLX (NON = 2,6-bis-((2,6-diisopropylphenyl)imino)methyl phenoxide; LX = methallyl or L = py, X = tolyl, 2-4) ethylene polymerization precatalysts have been synthesized, as well as a heterobimetallic Ni/Zn complex, (NON)Ni(C4H7)ZnBr2 (5). Each precatalyst could be activated (or promoted) by ZnX2 (X = Cl, Br, Et) to polymerize ethylene. In situ recruitment of ZnX2 by the free imine binding pocket of the NON complexes results in the generation of heterobimetallic active species that produce lower Mn polyethylene than monometallic controls. Room temperature ZnX2-promoted polymerizations with these catalysts resulted in bimodal Mn distributions that result from different catalyst speciation: "dangling" imine-ligated ZnX2 species yield higher Mn polymer while N,O-chelated ZnX2 species yield lower Mn polymer. Running polymerizations at higher temperature yields in only lower Mn polymer resulting from exclusive formation of the thermodynamically favored N,O chelated Ni/Zn heterobimetallic. DFT calculations indicate that this bridging bimetallic complex undergoes ß-H elimination more facilely than monometallic Ni analogues, resulting in lower molecular weight polymers.

2.
J Am Chem Soc ; 136(4): 1650-62, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24383494

RESUMO

Tungsten nitrido complexes of the form WN(NR2)3 [R = combinations of Me, Et, (i)Pr, (n)Pr] have been synthesized as precursors for the chemical vapor deposition of WN(x)C(y), a material of interest for diffusion barriers in Cu-metallized integrated circuits. These precursors bear a fully nitrogen coordinated ligand environment and a nitrido moiety (W≡N) designed to minimize the temperature required for film deposition. Mass spectrometry and solid state thermolysis of the precursors generated common fragments by loss of free dialkylamines from monomeric and dimeric tungsten species. DFT calculations on WN(NMe2)3 indicated the lowest gas phase energy pathway for loss of HNMe2 to be ß-H transfer following formation of a nitrido bridged dimer. Amorphous films of WN(x)C(y) were grown from WN(NMe2)3 as a single source precursor at temperatures ranging from 125 to 650 °C using aerosol-assisted chemical vapor deposition (AACVD) with pyridine as the solvent. Films with stoichiometry approaching W2NC were grown between 150 and 450 °C, and films grown at 150 °C were highly smooth, with a RMS roughness of 0.5 nm. In diffusion barrier tests, 30 nm of film withstood Cu penetration when annealed at 500 °C for 30 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...