Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670183

RESUMO

Although cadmium-based quantum dots (QDs) are highly promising candidates for numerous biological applications, their intrinsic toxicity limits their pertinency in living systems. Surface functionalization of QDs with appropriate molecules could reduce the toxicity level. Herein, we have synthesized the smaller sized (1-5 nm) aqueous-compatible biogenic CdTe QDs using human serum albumin (HSA) as a surface passivating agent via a greener approach. HSA-functionalized CdTe QDs have been explored in multiple in vitro sensing and biological applications, namely, (1) sensing, (2) anti-bacterial and (3) anti-cancer properties. Using CdTe-HSA QDs as a fluorescence probe, a simple fluorometric method has been developed for highly sensitive and selective detection of blood marker bilirubin and hazardous Hg2+ ion with a limit of detection (LOD) of 3.38 and 0.53 ng/mL, respectively. CdTe-HSA QDs also acts as a sensor for standard antibiotics, tetracycline and rifampicin with LOD values of 41.34 and 114.99 ng/mL, respectively. Nano-sized biogenic CdTe-HSA QDs have shown promising anti-bacterial activities against both gram-negative, E. coli and gram-positive, E. faecalis strains confirming more effectiveness against E. faecalis strains. The treatment of human cervical cancer cell lines (HeLa cells) with the synthesized QDs reflected the proficient cytotoxic properties of QDs.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Compostos de Cádmio , Pontos Quânticos , Albumina Sérica Humana , Telúrio , Pontos Quânticos/química , Telúrio/química , Humanos , Compostos de Cádmio/química , Antibacterianos/farmacologia , Antibacterianos/química , Técnicas Biossensoriais/métodos , Albumina Sérica Humana/química , Escherichia coli/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Bilirrubina
2.
J Mater Chem B ; 11(9): 1998-2015, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752685

RESUMO

Biocompatible quantum dots (QDs) have attracted a lot of attention due to their potential biological applications (drug delivery, sensing and diagnosis). Here, we have synthesized 2-4 nm sized biocompatible zinc sulphide (ZnS) QDs using a plant leaf extract as an immobilizing and stabilizing agent via a green route. We have investigated the biological effects of ZnS QDs in a variety of applications, including (1) anti-bacterial activity, (2) cell cytotoxicity, (3) bio-sensing and (4) protein binding. Studies on the anti-bacterial activity of the as-synthesized ZnS QDs against E. coli and E. faecalis inhibited bacterial growth effectively and showed a cytotoxic effect on the HeLa cell line. The biosynthesized ZnS QDs act as a fluorescence probe to detect bilirubin and rifampicin (RFP) with a wide linear range, high sensitivity, good selectivity, and a low limit of detection (LOD), with LOD values of 22.12 ± 0.25 ng mL-1 and 122.37 ± 0.42 ng mL-1, respectively. In a biological matrix, the QDs can form a complex with biomacromolecules; therefore, we studied the interaction between a carrier protein (HSA) and the as-synthesized ZnS QDs. The surface functionalized and nano-sized ZnS-GT QDs were observed to form complexes with the human serum albumin (HSA) protein and quenched the intrinsic fluorescence of HSA through static and dynamic quenching modes. The binding affinity was observed to be of the order of 105 M-1 for the HSA-ZnS-GT QD interactions, which can be considered as a reversible mode of binding. The effect of the ZnS QDs on other ligands and protein interactions was also studied. Enhanced binding affinities for HSA-quercetin ((5.994 ± 0.139) × 105 M-1) and HSA-luteolin ((3.068 ± 0.127) × 105 M-1) interactions were also observed in the presence of ZnS-GT QDs.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/química , Ligação Proteica , Células HeLa , Escherichia coli/metabolismo , Antioxidantes/metabolismo , Chá
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 211-221, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29145059

RESUMO

The interactions of naringenin (NG) and naringin (NR) with Hen Egg White Lysozyme (HEWL) in aqueous medium have been investigated using UV-vis spectroscopy, steady-state fluorescence, circular dichroism (CD), Fourier Transform infrared spectroscopy (FT-IR) and molecular docking analyses. Both NG and NR can quench the intrinsic fluorescence of HEWL via static quenching mechanism. At 300K, the value of binding constant (Kb) of HEWL-NG complex (5.596±0.063×104M-1) was found to be greater than that of HEWL-NR complex (3.404±0.407×104M-1). The negative ΔG° values in cases of both the complexes specify the spontaneous binding. The binding distance between the donor (HEWL) and acceptor (NG/NR) was estimated using the Försters theory and the possibility of non-radiative energy transfer from HEWL to NG/NR was observed. The presence of metal ions (Ca2+, Cu2+ and Fe2+) decreased the binding affinity of NG/NR towards HEWL. Synchronous fluorescence studies indicate the change in Trp micro-environment due to the incorporation of NG/NR into HEWL. CD and FT-IR studies indicated that the α-helicity of the HEWL was slightly enhanced due to ligand binding. NG and NR inhibited the enzymatic activity of HEWL and exhibited their affinity for the active site of HEWL. Molecular docking studies revealed that both NG and NR bind in the close vicinity of Trp 62 and Trp 63 residues which is vital for the catalytic activity.


Assuntos
Flavanonas/metabolismo , Simulação de Acoplamento Molecular , Muramidase/metabolismo , Animais , Dicroísmo Circular , Flavanonas/química , Íons , Cinética , Muramidase/química , Ligação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
4.
J Photochem Photobiol B ; 178: 40-52, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29102848

RESUMO

Flavonoids are biologically imperative compounds used as anti-oxidants, anti-cancer, anti-bacterial agents etc. The current work reports comprehensive binding studies of two important flavonoids, 6-hydroxyflavone and 5,7-dihydroxyflavone (chrysin) with bovine hemoglobin (BHb) at 298K and 308K, in aqueous medium using UV-vis spectroscopy, steady state fluorescence, circular dichroism (CD) measurements, Fourier Transform infrared spectroscopy (FT-IR) and molecular docking studies. Both 6-hydroxyflavone and chrysin can quench the intrinsic fluorescence intensity of BHb via static quenching mechanism. The values of binding constant (Kb) for BHb-chrysin complex (3.177±0.992×104M-1, at 298K) was found to be greater than that of BHb-6-hydroxyflavone complex (2.874±0.863×104M-1, at 298K) and the Kb values decreased with the rise in temperature. The thermodynamic parameters indicated that hydrophobic forces and H-bonding play crucial role in BHb-6-hydroxyflavone complexation whereas electrostatic interaction plays the major role in the binding of BHb and chrysin. The binding distances from donor BHb to the acceptor ligands (6-hydroxyflavone and chrysin) were estimated using the Föster's theory and the possibility of non-radiative energy transfer from BHb to 6-hydroxyflavone/chrysin was observed. The ligands, 6-hydroxyflavone and chrysin induced conformational change around Trp residues in BHb as confirmed by synchronous and 3D fluorescence results. CD and FT-IR studies indicated that the % α-helicity of BHb was enhanced due to 6-hydroxyflavone/chrysin binding. Both the flavonoids showed remarkable inhibitory effect towards BHb glycation. Hydrophobic probe (8-anilino-1-naphthalenesulfonic acid, ANS) displacement and molecular docking studies revealed that the ligands bind within the hydrophobic pocket of BHb.


Assuntos
Flavonoides/metabolismo , Hemoglobinas/metabolismo , Simulação de Acoplamento Molecular , Animais , Bovinos , Flavonoides/farmacologia , Glicosilação/efeitos dos fármacos , Hemoglobinas/química , Ligantes , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...