Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 88(8): 083307, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863673

RESUMO

Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.

2.
Rev Sci Instrum ; 84(8): 084706, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24007087

RESUMO

A fourth order (LCLC) resonant converter based capacitor charging power supply (CCPS) is designed and developed for pulse power applications. Resonant converters are preferred t utilize soft switching techniques such as zero current switching (ZCS) and zero voltage switching (ZVS). An attempt has been made to overcome the disadvantages in 2nd and 3rd resonant converter topologies; hence a fourth order resonant topology is used in this paper for CCPS application. In this paper a novel fourth order LCLC based resonant converter has been explored and mathematical analysis carried out to calculate load independent constant current. This topology provides load independent constant current at switching frequency (fs) equal to resonant frequency (fr). By changing switching condition (on time and dead time) this topology has both soft switching techniques such as ZCS and ZVS for better switching action to improve the converter efficiency. This novel technique has special features such as low peak current through switches, DC blocking for transformer, utilizing transformer leakage inductance as resonant component. A prototype has been developed and tested successfully to charge a 100 µF capacitor to 200 V.


Assuntos
Fontes de Energia Elétrica , Condutividade Elétrica , Desenho de Equipamento
3.
Rev Sci Instrum ; 83(8): 084702, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938319

RESUMO

In this article a novel way of synchronizing two parallel connected sparkgap switches with accuracies of 1-5 ns for high frequency pulsed power applications is described. The circuit design of a synchronized sparkgap switch circuit is discussed. The circuit uses a combination of one master sparkgap and a set of inductor and capacitors to synchronize two sparkgaps and can be controlled via an IGBT switch. Critical issues for circuit design are presented together with analytical calculations and simulations. Experimental verification of the novel topology is carried out in a prototype experimental setup. Results showing nanosecond level of accuracy in synchronization are reported in this paper along with simulations and analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA