Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Weather Clim Soc ; 15(3): 477-492, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37415774

RESUMO

Climate change is expected to impact individuals' recreational choices, as changing temperatures and precipitation patterns influence participation in outdoor recreation and alternative activities. This paper empirically investigates the relationship between weather and outdoor recreation using nationally representative data from the contiguous United States. We find that across most outdoor recreational activities, participation is lowest on the coldest days (<35 degrees Fahrenheit) and highest at moderately high temperatures (80 to 90 degrees). Notable exceptions to this trend include water sports and snow and ice sports, for which participation peaks at the highest and lowest temperatures, respectively. If individuals continue to respond to temperature changes the same way that they have in the recent past, in a future climate that has fewer cool days and more moderate and hot days, our model anticipates net participation across all outdoor recreation activities will increase by 88 million trips annually at 1 degree Celsius of warming (CONUS) and up to 401 million trips at 6 degrees of warming, valued between $3.2 billion and $15.6 billion in consumer surplus annually (2010 population). The increase in trips is driven by participation in water sports; excluding water sports from future projections decreases the consumer surplus gains by approximately 75 percent across all modeled degrees of warming. If individuals in northern regions respond to temperature like people in southern regions currently do (a proxy for adaptation), total outdoor recreation trips will increase by an additional 17 percent compared to no adaptation at 6 degrees of warming. This benefit is generally not seen at lower degrees of warming.

4.
Environ Health Perspect ; 130(8): 87007, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35983960

RESUMO

BACKGROUND: This paper represents, to our knowledge, the first national-level (United States) estimate of the economic impacts of vibriosis cases as exacerbated by climate change. Vibriosis is an illness contracted through food- and waterborne exposures to various Vibrio species (e.g., nonV. cholerae O1 and O139 serotypes) found in estuarine and marine environments, including within aquatic life, such as shellfish and finfish. OBJECTIVES: The objective of this study was to project climate-induced changes in vibriosis and associated economic impacts in the United States related to changes in sea surface temperatures (SSTs). METHODS: For our analysis to identify climate links to vibriosis incidence, we constructed three logistic regression models by Vibrio species, using vibriosis data sourced from the Cholera and Other Vibrio Illness Surveillance system and historical SSTs. We relied on previous estimates of the cost-per-case of vibriosis to estimate future total annual medical costs, lost income from productivity loss, and mortality-related indirect costs throughout the United States. We separately reported results for V. parahaemolyticus, V. vulnificus, V. alginolyticus, and "V. spp.," given the different associated health burden of each. RESULTS: By 2090, increases in SST are estimated to result in a 51% increase in cases annually relative to the baseline era (centered on 1995) under Representative Concentration Pathway (RCP) 4.5, and a 108% increase under RCP8.5. The cost of these illnesses is projected to reach $5.2 billion annually under RCP4.5, and $7.3 billion annually under RCP8.5, relative to $2.2 billion in the baseline (2018 U.S. dollars), equivalent to 140% and 234% increases respectively. DISCUSSION: Vibriosis incidence is likely to increase in the United States under moderate and unmitigated climate change scenarios through increases in SST, resulting in a substantial burden of morbidity and mortality, and costing billions of dollars. These costs are mostly attributable to deaths, primarily from exposure to V. vulnificus. Evidence suggests that other factors, including sea surface salinity, may contribute to further increases in vibriosis cases in some regions of the United States and should also be investigated. https://doi.org/10.1289/EHP9999a.


Assuntos
Mudança Climática , Vibrioses , Humanos , Incidência , Alimentos Marinhos , Temperatura , Estados Unidos/epidemiologia , Vibrioses/epidemiologia
5.
Clim Change ; 1652021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-34321705

RESUMO

Characterizing the future risks of climate change is a key goal of climate impacts analysis. Temperature binning provides a framework for analyzing sector-specific impacts by degree of warming as an alternative or complement to traditional scenario-based approaches in order to improve communication of results, comparability between studies, and flexibility to facilitate scenario analysis. In this study, we estimate damages for nine climate impact sectors within the contiguous United States (US) using downscaled climate projections from six global climate models, at integer degrees of US national warming. Each sector is analyzed based on socioeconomic conditions for both the beginning and the end of the century. The potential for adaptive measures to decrease damages is also demonstrated for select sectors; differences in damages across adaptation response scenarios within some sectors can be as much as an order of magnitude. Estimated national damages from these sectors based on a reactive adaptation assumption and 2010 socioeconomic conditions range from $600 million annually per degree of national warming for winter recreation to $8 billion annually per degree of national warming for labor impacts. Results are also estimated per degree of global temperature change and for 2090 socioeconomic conditions.

6.
Environ Res Commun ; 3(6): 1-11, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36072508

RESUMO

The brick kiln industrial sector in South Asia accounts for large amounts of short-lived climate forcer (SLCF) emissions, namely black carbon (BC), organic carbon (OC), and sulfur dioxide (SO2; the precursor to atmospheric sulfate [SO4]). These SLCFs are air pollutants and have important impacts on both human health and the Arctic, a region currently experiencing more than double the rate of warming relative to the global average. Using previously derived Arctic equilibrium temperature response factors, we estimate the contribution to Arctic temperature impacts from previously reported emissions of BC, OC, and SO2 from four prevalent South Asian brick kiln types (Bull's Trench [BTK], Down Draught [DDK], Vertical Shaft [VSBK], and Zig-zag). Net annual BC (115 gigagrams [Gg]), OC (17 Gg), and SO2 (350 Gg) baseline emissions from all four South Asian kiln types resulted in 3.36 milliKelvin (mK) of Arctic surface warming. Given these baseline emissions and Arctic temperature responses, we estimate the current and maximum potential emission and temperature mitigation considering two kiln type conversions. Assuming no change in brick production, baseline emissions have been reduced by 17% when considering current BTK to Zig-zag conversions and have the potential to decrease by 82% given a 100% future conversion rate. This results in a 25% and 119% reduction in Arctic warming, respectively. Replacing DDKs with VSBKs increases baseline SLCF emissions by 28% based on current conversions and has the potential to increase by 131%. This conversion still reduces baseline warming by 31% and 149%, respectively. These results show that brick kiln conversions can have different impacts on local air quality and Arctic climate. When considering brick kiln emissions mitigation options, regional and/or local policy action should consider several factors, including local air quality, worker health and safety, cost, quality of bricks, as well as global climate impacts.

7.
Earths Future ; 8(8)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32802911

RESUMO

The use of residential heating devices is a key source of black carbon and other short-lived climate forcer emissions in Arctic and other high latitude regions, with important impacts to the Arctic climate and human health. The types of combustion technologies and fuels used varies by region, which impacts the emission profiles of these pollutants and thus the magnitude of Arctic climate responses. Using emission inventory data from 14 European countries, we derive wood-fueled residential heating emissions of black carbon, organic carbon, and sulfate from six appliance types in 2016. Using previously derived equilibrium Arctic temperature responses, we estimate Arctic temperature influences from each appliance type. Using the 2016 appliance emission data as a baseline, we compute the emission mass and Arctic temperature mitigation potential from hypothetical stove conversion scenarios. A total of 43.2 gigagrams (Gg) of black carbon, 175.7 Gg of organic carbon, and 10.3 Gg of sulfate were emitted in 2016 from the six appliance types in the 14 countries. The combined emissions increased Arctic surface temperatures by +2.8 millikelvin. If each country converted its appliance fleet to the technologically advanced pellet stoves and boilers, the combined black carbon, organic carbon, and sulfate emissions from heating appliances could be reduced by 94% and the Arctic temperature response reduced by 85%. The specific source and originating region of emissions are important factors in resolving the magnitude of their impacts. Improved country-level accounting of specific appliances and their emission characteristics can lead to a better understanding of potential mitigation options.

8.
Clim Chang Econ (Singap) ; N/A2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33628400

RESUMO

Observational evidence shows marine species are shifting their geographic distribution in response to warming ocean temperatures. These shifts have implications for the US fisheries and seafood consumers. The analysis presented here employs a two-stage inverse demand model to estimate the consumer welfare impacts of projected increases or decreases in commercial landings for 16 US fisheries from 2021 to 2100, based on the predicted changes in thermally available habitat. The fisheries analyzed together account for 56% of the current US commercial fishing revenues. The analysis compares welfare impacts under two climate scenarios: a high emissions case that assumes limited efforts to reduce atmospheric greenhouse gas and a low emissions case that assumes more stringent mitigation. The present value of consumer surplus impacts when discounted at 3% is a net loss of $2.1 billion (2018 US$) in the low emissions case and $4.2 billion in the high emissions scenario. Projected annual losses reach $278-901 million by 2100.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...