Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 223: 115125, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36375394

RESUMO

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family with diverse psychopharmacological effects including antidepressant and anxiolytic actions. However, the clinical use of BDNF is limited due to its poor pharmacokinetic properties. The development of low-molecular-weight BDNF mimetics passing through the blood-brain barrier is an emerging strategy for improved managing psychiatric diseases. The present study characterizes a novel dipeptide mimetic of the 2nd BDNF loop named GTS-201, which exhibits psychotropic properties in experimental animal models of anxiety and alcohol dependence. The aim of this work was to study the pharmacokinetics of GTS-201 in rats at a saturating dosage of 5 mg/kg applied by the intraperitoneal route and to characterize the effects on neurotransmitter levels in the blood and brain. The maximum concentration (Cmax) of GTS-201 in the plasma (867 ± 69 ng/ml) was recorded at 35 ± 7.7 min after administration (Tmax) with a half-elimination period (T1/2) of 19.5 ± 1.8 min, while in the brain tissue Cmax was 14.92 ± 3.11 ng/ml, Tmax was 40.0 ± 7.7 min and T1/2 were 87.5 ± 12.7 min. The relative tissue availability of the GTS-201 for the brain reached 2.9%. At the dose applied, GTS-201 induced a significant increase of serotonin (5-fold) and dopamine levels in the brain tissue (8-fold) along with a decrease in cortisol content in blood plasma 45 min after acute administration. In summary, GTS-201 crosses the blood-brain barrier after acute administration and affects the activity of serotonergic and dopaminergic systems, which may underlie its neuropsychotropic effects described previously.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Dipeptídeos , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dipeptídeos/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Dopamina , Neurotransmissores
2.
Neurobiol Aging ; 91: 76-87, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32224067

RESUMO

The etiology and pathogenesis of Parkinson's disease (PD) are tightly linked to the gain-of-function of α-synuclein. However, gradual accumulation of α-synuclein aggregates in dopaminergic neurons of substantia nigra pars compacta (SNpc) leads to the depletion of the functional pool of soluble α-synuclein, and therefore, creates loss-of-function conditions, particularly in presynaptic terminals of these neurons. Studies of how this late-onset depletion of a protein involved in many important steps of neurotransmission contributes to PD progression and particularly, to worsening the nigrostriatal pathology at late stages of the disease are limited and obtained data, are controversial. Recently, we produced a mouse line for conditional knockout of the gene encoding α-synuclein, and here we used its tamoxifen-inducible pan-neuronal inactivation to study consequences of the adult-onset (from the age of 6 months) and late-onset (from the age of 12 months) α-synuclein depletion to the nigrostriatal system. No significant changes of animal balance/coordination, the number of dopaminergic neurons in the SNpc and the content of dopamine and its metabolites in the striatum were observed after adult-onset α-synuclein depletion, but in aging (18-month-old) late-onset depleted mice we found a significant reduction of major dopamine metabolites without changes to the content of dopamine itself. Our data suggest that this might be caused, at least partially, by reduced expression of aldehyde dehydrogenase ALDH1a1 and could lead to the accumulation of toxic intermediates of dopamine catabolism. By extrapolating our findings to a potential clinical situation, we suggest that therapeutic downregulation of α-synuclein expression in PD patients is a generally safe option as it should not cause adverse side effects on the functionality of their nigrostriatal system. However, if started in aged patients, this type of therapy might trigger slight functional changes of the nigrostriatal system with potentially unwanted additive effect to already existing pathology.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Técnicas de Inativação de Genes , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/metabolismo , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação para Baixo , Expressão Gênica/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Doença de Parkinson/terapia , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Transmissão Sináptica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...