Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 93(1): 012130, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871047

RESUMO

Time-periodic driving provides a promising route toward engineering nontrivial states in quantum many-body systems. However, while it has been shown that the dynamics of integrable, noninteracting systems can synchronize with the driving into a nontrivial periodic motion, generic nonintegrable systems are expected to heat up until they display a trivial infinite-temperature behavior. In this paper we show that a quasiperiodic time evolution over many periods can also emerge in weakly interacting systems, with a clear separation of the timescales for synchronization and the eventual approach of the infinite-temperature state. This behavior is the analog of prethermalization in quenched systems. The synchronized state can be described using a macroscopic number of approximate constants of motion. We corroborate these findings with numerical simulations for the driven Hubbard model.

2.
Phys Rev Lett ; 110(4): 046403, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166180

RESUMO

We calculate the spectra and spin susceptibilities of a Hubbard model with two bands having different bandwidths but the same on-site interaction, with parameters close to the orbital-selective Mott transition, using dynamical mean-field theory. If the Hund's rule coupling is sufficiently strong, one common energy scale emerges which characterizes both the location of kinks in the self-energy and extrema of the diagonal spin susceptibilities. A physical explanation of this energy scale is derived from a Kondo-type model. We infer that for multiband systems local spin dynamics rather than spectral functions determine the location of kinks in the effective band structure.

3.
Phys Rev Lett ; 109(11): 116405, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005657

RESUMO

We report a bound state of the one-dimensional two-particle (bosonic or fermionic) Hubbard model with an impurity potential. This state has the Bethe-ansatz form, although the model is nonintegrable. Moreover, for a wide region in parameter space, its energy is located in the continuum band. A remarkable advantage of this state with respect to similar states in other systems is the simple analytical form of the wave function and eigenvalue. This state can be tuned in and out of the continuum continuously.

4.
Phys Rev Lett ; 103(5): 056403, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19792519

RESUMO

We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization occurs. Our results indicate a dynamical phase transition which should be observable in experiments on trapped fermionic atoms.

5.
Phys Rev Lett ; 100(12): 120404, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18517843

RESUMO

We present the exact solution of the Falicov-Kimball model after a sudden change of its interaction parameter using nonequilibrium dynamical mean-field theory. For different interaction quenches between the homogeneous metallic and insulating phases the system relaxes to a nonthermal steady state on time scales on the order of variant Planck's over 2pi/bandwidth, showing collapse and revival with an approximate period of h/interaction if the interaction is large. We discuss the reasons for this behavior and provide a statistical description of the final steady state by means of generalized Gibbs ensembles.

6.
Phys Rev Lett ; 91(1): 017205, 2003 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12906571

RESUMO

We show that at low temperatures T an inhomogeneous radial magnetic field with magnitude B gives rise to a persistent magnetization current around a mesoscopic ferromagnetic Heisenberg ring. Under optimal conditions, this spin current can be as large as gmicro(B)(T/ variant Planck's over 2pi )exp([-2pi(gmicro(B)B/delta)(1/2)], as obtained from leading-order spin-wave theory. Here g is the gyromagnetic factor, micro(B) is the Bohr magneton, and delta is the energy gap between the ground-state and the first spin-wave excitation. The magnetization current endows the ring with an electric dipole moment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...