Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 102(4): 151358, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37703749

RESUMO

Salmonella enterica serovar Typhimurium manipulates cellular Rho GTPases for host cell invasion by effector protein translocation via the Type III Secretion System (T3SS). The two Guanine nucleotide exchange (GEF) mimicking factors SopE and -E2 and the inositol phosphate phosphatase (PiPase) SopB activate the Rho GTPases Rac1, Cdc42 and RhoA, thereby mediating bacterial invasion. S. Typhimurium lacking these three effector proteins are largely invasion-defective. Type III secretion is crucial for both early and later phases of the intracellular life of S. Typhimurium. Here we investigated whether and how the small GTPase RhoB, known to localize on endomembrane vesicles and at the invasion site of S. Typhimurium, contributes to bacterial invasion and to subsequent steps relevant for S. Typhimurium lifestyle. We show that RhoB is significantly upregulated within hours of Salmonella infection. This effect depends on the presence of the bacterial effector SopB, but does not require its phosphatase activity. Our data reveal that SopB and RhoB bind to each other, and that RhoB localizes on early phagosomes of intracellular S. Typhimurium. Whereas both SopB and RhoB promote intracellular survival of Salmonella, RhoB is specifically required for Salmonella-induced upregulation of autophagy. Finally, in the absence of RhoB, vacuolar escape and cytosolic hyper-replication of S. Typhimurium is diminished. Our findings thus uncover a role for RhoB in Salmonella-induced autophagy, which supports intracellular survival of the bacterium and is promoted through a positive feedback loop by the Salmonella effector SopB.


Assuntos
Infecções por Salmonella , Humanos , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium , Proteínas rho de Ligação ao GTP/metabolismo , Autofagia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
2.
Curr Biol ; 32(7): 1577-1592.e8, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35290799

RESUMO

Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-ß, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.


Assuntos
Actinas , Proteínas Mitocondriais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Cálcio/metabolismo , Forminas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Polimerização
3.
Nat Commun ; 8: 14832, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327544

RESUMO

Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas/metabolismo , Pseudópodes/metabolismo , Animais , Fenômenos Biomecânicos , Sistemas CRISPR-Cas/genética , Movimento Celular , Fibroblastos/metabolismo , Forminas , Técnicas de Silenciamento de Genes , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Células NIH 3T3 , Fenótipo , Polimerização , Pseudópodes/ultraestrutura , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...