Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(6): e2305198, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37845747

RESUMO

Composites with high strength and high fracture resistance are desirable for structural and protective applications. Most composites, however, suffer from poor damage tolerance and are prone to unpredictable fractures. Understanding the behavior of materials with an irregular reinforcement phase offers fundamental guidelines for tailoring their performance. Here, the fracture nucleation and propagation in two phase composites, as a function of the topology of their irregular microstructures is studied. A stochastic algorithm is used to design the polymeric reinforcing network, achieving independent control of topology and geometry of the microstructure. By tuning the local connectivity of isodense tiles and their assembly into larger structures, the mechanical and fracture properties of the architected composites are tailored at the local and global scale. Finally, combining different reinforcing networks into a spatially determined meso-scale assembly, it is demonstrated how the spatial propagation of fracture in architected composite materials can be designed and controlled a priori.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...