Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39001244

RESUMO

Primary Immune Thrombocytopenia (ITP) is a rare autoimmune disease characterised by the immune-mediated destruction of peripheral blood platelets in patients leading to low platelet counts and bleeding. The diagnosis and effective management of ITP are challenging because there is no established test to confirm the disease and no biomarker with which one can predict the response to treatment and outcome. In this work, we conduct a feasibility study to check if machine learning can be applied effectively for the diagnosis of ITP using routine blood tests and demographic data in a non-acute outpatient setting. Various ML models, including Logistic Regression, Support Vector Machine, k-Nearest Neighbor, Decision Tree and Random Forest, were applied to data from the UK Adult ITP Registry and a general haematology clinic. Two different approaches were investigated: a demographic-unaware and a demographic-aware one. We conduct extensive experiments to evaluate the predictive performance of these models and approaches, as well as their bias. The results revealed that Decision Tree and Random Forest models were both superior and fair, achieving nearly perfect predictive and fairness scores, with platelet count identified as the most significant variable. Models not provided with demographic information performed better in terms of predictive accuracy but showed lower fairness scores, illustrating a trade-off between predictive performance and fairness.

2.
Int J Biomed Imaging ; 2024: 9962839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883272

RESUMO

This paper extends our previous method for COVID-19 diagnosis, proposing an enhanced solution for detecting COVID-19 from computed tomography (CT) images using a lean transfer learning-based model. To decrease model misclassifications, two key steps of image processing were employed. Firstly, the uppermost and lowermost slices were removed, preserving sixty percent of each patient's slices. Secondly, all slices underwent manual cropping to emphasize the lung areas. Subsequently, resized CT scans (224 × 224) were input into an Xception transfer learning model with a modified output. Both Xception's architecture and pretrained weights were leveraged in the method. A big and rigorously annotated database of CT images was used to verify the method. The number of patients/subjects in the dataset is more than 5000, and the number and shape of the slices in each CT scan varies greatly. Verification was made both on the validation partition and on the test partition of unseen images. Results on the COV19-CT database showcased not only improvement from our previous solution and the baseline but also comparable performance to the highest-achieving methods on the same dataset. Further validation studies could explore the scalability and adaptability of the developed methodologies across diverse healthcare settings and patient populations. Additionally, investigating the integration of advanced image processing techniques, such as automated region of interest detection and segmentation algorithms, could enhance the efficiency and accuracy of COVID-19 diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...