Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(36): 48565-48575, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39225113

RESUMO

An essential step toward enabling the production of renewable and cost-efficient fuels is an improved understanding of the performance of energy conversion materials. In recent years, there has been growing interest in ternary metal oxides. Particularly, α-SnWO4 exhibited promising properties for application to photoelectrochemical (PEC) water splitting. However, the number of corresponding studies remains limited, and a deeper understanding of the physical and chemical processes in α-SnWO4 is necessary. To date, charge-carrier generation, separation, and transfer have not been exhaustively studied for SnWO4-based photoelectrodes. All of these processes depend on the phase composition, not only α-SnWO4 but also on the related phases SnW3O9 and WO3, as well as on their spatial distributions resulting from the coating synthesis. In the present work, these processes in different phases of tin tungstate films were investigated by transient surface photovoltage (TSPV) spectroscopy to complement the analysis of the applicability of α-SnWO4 thin films for practical PEC oxygen evolution. Pure α-SnWO4 films exhibit higher photoactivities than those of films containing secondary SnW3O9 and WO3 phases due to the higher recombination of charge carriers when these phases are present.

2.
ACS Appl Mater Interfaces ; 14(19): 22071-22081, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35512324

RESUMO

Hydrogen produced from solar energy has the potential to replace petroleum in the future. To this respect, there is a need in the abandoned and efficient materials that can continuously split water molecules using solar energy. In this report, an ammonium thiomolybdate (ATM: (NH4)2Mo3S13) is evaluated as a p-type semiconductor film photocathode for hydrogen evolution reaction. The ATM thin films are prepared by spin-coating on fluorine-doped tin oxide substrates, and their structural, morphological, optical, photoelectrical, and photoelectrochemical (PEC) properties are studied. Transient surface photovoltage (TSPV) spectroscopy and spectroscopic ellipsometry indicate the band gap Eg = 1.9 eV for the ATM thin films. Furthermore, the photovoltage of the ATM thin films measured by TSPV is correlated to the photocurrents measured by the PEC characterization that can be used to evaluate the material potential for hydrogen generation. The films exhibit a low photocurrent density of 46 µA cm-2 at 0 VRHE. However, its combination with WSe2 thin-film photocathodes results in a significant increase in photocurrent density up to 4.6 mA cm-2 at 0 VRHE (100 times). The reason for such a strong charge carrier transfer effect for ATM/WSe2 heterojunction photocathodes is studied by TSPV spectroscopy that allows a comprehensive evaluation of potential photovoltaic materials toward PEC hydrogen production. Furthermore, the photovoltage generated by a WSe2 thin film is 30 times lower than that of its single crystal, which indicates that the quality of WSe2 thin films should be improved for faster PEC hydrogen evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA