Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2300828120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523549

RESUMO

Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions.


Assuntos
Fenômenos Biológicos , Oxigênio , Isótopos de Oxigênio/química , Oxigênio/química
2.
Physiol Plant ; 174(6): e13802, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36259916

RESUMO

Control phenomena in biology usually refer to changes in gene expression and protein translation and modification. In this paper, another mode of regulation is highlighted; we propose that photosynthetic organisms can harness the interplay between localization and delocalization of energy transfer by utilizing small conformational changes in the structure of light-harvesting complexes. We examine the mechanism of energy transfer in photosynthetic pigment-protein complexes, first through the scope of theoretical work and then by in vitro studies of these complexes. Next, the biological relevance to evolutionary fitness of this localization-delocalization switch is explored by in vivo experiments on desert crust and marine cyanobacteria, which are both exposed to rapidly changing environmental conditions. These examples demonstrate the flexibility and low energy cost of this mechanism, making it a competitive survival strategy.


Assuntos
Cianobactérias , Complexo de Proteínas do Centro de Reação Fotossintética , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Transferência de Energia , Cianobactérias/genética , Cianobactérias/metabolismo
3.
Commun Biol ; 5(1): 727, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869258

RESUMO

Cyanobacteria of the genus Synechococcus play a key role as primary producers and drivers of the global carbon cycle in temperate and tropical oceans. Synechococcus use phycobilisomes as photosynthetic light-harvesting antennas. These contain phycoerythrin, a pigment-protein complex specialized for absorption of blue light, which penetrates deep into open ocean water. As light declines with depth, Synechococcus photo-acclimate by increasing both the density of photosynthetic membranes and the size of the phycobilisomes. This is achieved with the addition of phycoerythrin units, as demonstrated in laboratory studies. In this study, we probed Synechococcus populations in an oligotrophic water column habitat at increasing depths. We observed morphological changes and indications for an increase in phycobilin content with increasing depth, in summer stratified Synechococcus populations. Such an increase in antenna size is expected to come at the expense of decreased energy transfer efficiency through the antenna, since energy has a longer distance to travel. However, using fluorescence lifetime depth profile measurement approach, which is applied here for the first time, we found that light-harvesting quantum efficiency increased with depth in stratified water column. Calculated phycobilisome fluorescence quantum yields were 3.5% at 70 m and 0.7% at 130 m. Under these conditions, where heat dissipation is expected to be constant, lower fluorescence yields correspond to higher photochemical yields. During winter-mixing conditions, Synechococcus present an intermediate state of light harvesting, suggesting an acclimation of cells to the average light regime through the mixing depth (quantum yield of ~2%). Given this photo-acclimation strategy, the primary productivity attributed to marine Synechococcus should be reconsidered.


Assuntos
Ficobilissomas , Synechococcus , Fotossíntese , Ficoeritrina , Água
4.
J Phys Chem Lett ; 12(23): 5469-5472, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34085834

RESUMO

Enantioselective catalytic chiral reactions are important to all aspects of life sciences. Here we present the first utilization of the chiral induced spin selectivity (CISS) effect to form, enantioselectively, sp3 chiral centers in catalytic reactions, starting from achiral reagents. The enantiomeric symmetry is broken by affecting spin-controlled different reaction dynamics toward each of the enantiomers, using magnetic substrates. Two catalytic reactions are used for this purpose: a sulfide to sulfoxide oxidation and a Diels-Alder cycloaddition reaction, both catalyzed by hematite (Fe2O3). The proof of concept was evaluated by circular dichroism measurements and by chiral high-performance liquid chromatography techniques. These results provide direct evidence that the directionality of the electron spin can break enantiomeric symmetry, enabling asymmetric catalysis without using chiral reagents, solvents, or catalysts.

5.
FEBS J ; 288(3): 980-994, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32428340

RESUMO

Photosynthetic light harvesting is the first step in harnessing sunlight toward biological productivity. To operate efficiently under a broad and dynamic range of environmental conditions, organisms must tune the harvesting process according to the available irradiance. The marine cyanobacteria Synechococcus WH8102 species is well-adapted to vertical mixing of the water column. By studying its responses to different light regimes, we identify a new photo-acclimation strategy. Under low light, the phycobilisome (PBS) is bigger, with extended rods, increasing the absorption cross-section. In contrast to what was reported in vascular plants and predicted by Forster resonance energy transfer (FRET) calculations, these longer rods transfer energy faster than in the phycobilisomes of cells acclimated to a higher light intensity. Comparison of cultures grown under different blue light intensities, using fluorescence lifetime and emission spectra dependence on temperature at the range of 4-200 K in vivo, indicates that the improved transfer arises from enhanced energetic coupling between the antenna rods' pigments. We suggest two physical models according to which the enhanced coupling strength results either from additional coupled pathways formed by rearranging rod packing or from the coupling becoming non-classical. In both cases, the energy transfer would be more efficient than standard one-dimensional FRET process. These findings suggest that coupling control can be a major factor in photosynthetic antenna acclimation to different light conditions.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Ficobilissomas/metabolismo , Synechococcus/metabolismo , Clorofila/metabolismo , Relação Dose-Resposta à Radiação , Luz , Microscopia Eletrônica de Transmissão , Fotossíntese/efeitos da radiação , Ficobilissomas/efeitos da radiação , Ficobilissomas/ultraestrutura , Água do Mar/microbiologia , Espectrometria de Fluorescência , Synechococcus/efeitos da radiação , Synechococcus/ultraestrutura , Temperatura
6.
Front Mar Sci ; 7: 988, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33409285

RESUMO

Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30-150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae genera at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ15N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a, lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...