Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534690

RESUMO

The irresponsible overuse of antibiotics has increased the occurrence of resistant bacterial strains, which represents one of the biggest patient safety risks today. Due to antibiotic resistance and biofilm formation in bacteria, it is becoming increasingly difficult to suppress the bacterial strains responsible for various chronic infections. Honey was proven to inhibit bacterial growth and biofilm development, offering an alternative solution in the treatment of resistant infections and chronic wounds. Our studies included chestnut honey, valued for its high antibacterial activity, and the bacteria Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and S. epidermidis, known to form multi-species biofilm communities. Minimum inhibitory concentrations (MIC) of chestnut honey were determined for each bacterial strain. Afterwards, the mixed bacterial biofilms were treated with chestnut honey at different stages of maturity (incubation times: 2, 4, 6, 12, 24 h). The extent of biofilm inhibition was measured with a crystal violet assay and demonstrated by scanning electron microscopy (SEM). As the incubation time increased and the biofilm became more mature, inhibition rates decreased gradually. The most sensitive biofilm was the combination MRSA-S. epidermidis, with a 93.5% inhibition rate after 2 h of incubation. Our results revealed that chestnut honey is suitable for suppressing the initial and moderately mature stages of mixed biofilms.

2.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838474

RESUMO

Honey is known as an alternative remedy for the treatment of wounds. To evaluate the potential of five Hungarian honey types against wound-associated bacteria, in vitro microbiological assays were conducted on Pseudomonas aeruginosa, Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus (MRSA). Minimum inhibitory concentration (MIC) was determined with the broth macrodilution method, and biofilm degradation capacity was tested with a crystal violet assay. To understand the underlying mechanisms, the effects of honey treatments were assessed on bacterial membrane integrity and quorum sensing (QS). The highest antibacterial activity, indicated by the lowest MIC values, as well as the highest biofilm inhibition rates and membrane disruption, was displayed by chestnut and linden honeys. The most sensitive bacterium was S. epidermidis. Bacterial membrane degradation took place 40 min after treatment with honey solutions of at least a 40% concentration. Each honey sample exhibited anti-QS activity, which was most pronounced in the case of chestnut honey. It was concluded that the antibacterial, biofilm-inhibiting and anti-QS activities of linden and chestnut honeys were superior to those of acacia, goldenrod and milkweed honeys. In addition to the floral source, the antibacterial effect of honey is influenced by the microbial species treated. The use of honey in wound treatment can be justified by its diverse antibacterial mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...