Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(4): 2321-2332, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041402

RESUMO

Noise significantly limits the accuracy and stability of retrieving gas concentration with the traditional direct absorption spectroscopy (DAS). Here, we developed an adaptively optimized gas analysis model (AOGAM) composed of a neural sequence filter (NSF) and a neural concentration retriever (NCR) based on deep learning algorithms for extraction of methane absorption information from the noisy transmission spectra and obtaining the corresponding concentrations from the denoised spectra. The model was trained on two data sets, including a computationally generated one and the experimental one. We have applied this model for retrieving methane concentration from its transmission spectra in the near-infrared (NIR) region. The NSF was implemented through an encoder-decoder structure enhanced by the attention mechanism, improving robustness under noisy conditions. Further, the NCR was employed based on a combination of a principal component analysis (PCA) layer, which focuses the algorithm on the most significant spectral components, and a fully connected layer for solving the nonlinear inversion problem of the determination of methane concentration from the denoised spectra without manual computation. Evaluation results show that the proposed NSF outperforms widely used digital filters as well as the state-of-the-art filtering algorithms, improving the signal-to-noise ratio by 7.3 dB, and the concentrations determined with the NCR are more accurate than those determined with the traditional DAS method. With the AOGAM enhancement, the optimized methane sensor features precision and stability in real-time measurements and achieves the minimum detectable column density of 1.40 ppm·m (1σ). The promising results of the present study demonstrate that the combination of deep learning and absorption spectroscopy provides a more effective, accurate, and stable solution for a gas monitoring system.


Assuntos
Aprendizado Profundo , Algoritmos , Metano , Análise de Componente Principal
2.
Appl Opt ; 56(22): 6311-6316, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047829

RESUMO

We employed a midinfrared frequency comb source for methane detection in ambient air. The transmitted spectra over a bandwidth of about 500 nm were recorded with an optical spectrum analyzer under various experimental conditions of different path lengths. The normalized absorption spectra were compared and fitted with simulations, yielding quantitative values of concentrations of methane and water vapor in the ambient air. The 3σ detection limit was ∼6.6×10-7 cm-1 in ambient air for a broad spectral range, achieved with a path length of ∼590 m. This approach provides a broad spectral range, a large dynamic range, high sensitivity, and accurate calibration. The performed analysis of the residuals shows that an excellent agreement between the measured and calculated spectral profiles was obtained.

3.
Opt Express ; 22(19): 23026-33, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321773

RESUMO

We present a femtosecond frequency comb vernier spectrometer in the near infrared with a femtosecond Er doped fiber laser, a scanning high-finesse cavity and an InGaAs camera. By utilizing the properties of a frequency comb and a scanning high-finesse cavity such a spectrometer provides broad spectral bandwidth, high spectral resolution, and high detection sensitivity on a short time scale. We achieved an absorption sensitivity of ~8 × 10(-8) cm(-1)Hz(-1/2), corresponding to a detection limit of ~70 ppbv for acetylene, with a resolution of ~1.1 GHz in single images taken in 0.5 seconds and covering a frequency range of ~5 THz. Such measurements have broad applications for sensing greenhouse gases in this fingerprint near infrared region with a simple apparatus.


Assuntos
Acetileno/análise , Gases/análise , Lasers , Limite de Detecção , Espectroscopia de Luz Próxima ao Infravermelho/métodos
4.
Appl Opt ; 52(30): 7352-9, 2013 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-24216590

RESUMO

The dynamics of electronic excitations and their relaxation in a gold film is studied on the femtosecond time scale with a pump-probe technique. For the pump beam we use pulses with wavelengths centered at 800 nm, 400 nm or both. The surface plasmon resonance (SPR) in Kretschmann's configuration is used as a sensitive and fast-response probe of the dynamics of the dielectric properties of the gold film. The quantity that is monitored is the intensity of the reflected light at an incidence angle close to the SPR. With changes of the dielectric properties induced by the pump beam and during subsequent relaxation, the amount of the reflected light of the probe beam, sent with a variable delay, also changes, thus providing information on the temporal characteristics of the thermalization process. Special features of SPR probing with short pulses are also accounted for in this work. The thermalization of the electronic subsystem and energy transfer to the lattice are discussed in connection with the two-temperature relaxation model that takes into account temperature dependences of the electronic heat capacity and the electron-phonon coupling.

5.
Opt Lett ; 38(13): 2360-2, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811928

RESUMO

We report on a high-power mid-infrared (MIR) frequency comb source based on a femtosecond (fs) Er:fiber oscillator with a stabilized repetition rate of 250 MHz. The MIR frequency comb is produced through difference frequency generation in a periodically poled MgO-doped lithium niobate crystal. The output power is about 120 mW, with a pulse duration of about 80 fs and spectrum coverage from 2.9 to 3.6 µm, and the single comb mode power is larger than 0.3 µW over the range of 700 nm. The coherence properties of the produced high-power broadband MIR frequency comb are maintained, which was verified by heterodyne measurements. As the first application, the spectrum of a ~200 ppm methane-air mixture in a short 20 cm glass cell at ambient atmospheric pressure and temperature was measured.

6.
J Am Soc Mass Spectrom ; 23(7): 1260-5, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22549732

RESUMO

A portable apparatus for the separation of krypton from environmental air samples was tested. The apparatus is based on the cryogenic trapping of gases at liquid nitrogen temperature followed by controlled releases at higher temperatures. The setup consists of a liquid nitrogen trap for the removal of H(2)O and CO(2), followed by charcoal-filled coils that sequentially collect and release krypton and other gases providing four stages of gas chromatography to achieve separation and purification of krypton from mainly N(2), O(2), and Ar. Residual reactive gases remaining after the final stage of chromatography are removed with a hot Ti sponge getter. A thermal conductivity detector is used to monitor the characteristic elution times of the various components of condensed gases in the traps during step-wise warming of the traps from liquid nitrogen temperatures to 0 °C, and then to 100 °C. This allows optimizing the switching times of the valves between the stages of gas chromatography so that mainly krypton is selected and loaded to the next stage while exhausting the other gases using a He carrier. A krypton separation efficiency of ~80 % was determined using a quadrupole mass spectrometer.


Assuntos
Ar/análise , Criptônio/isolamento & purificação , Espectrometria de Massas/métodos , Dióxido de Carbono/química , Criptônio/química , Lasers , Temperatura , Água/química
7.
Opt Express ; 19(7): 6587-98, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21451686

RESUMO

The transmission of ultrashort (7 fs) broadband laser pulses through periodic gold nano-structures is studied. The distribution of the transmitted light intensity over wavelength and angle shows an efficient coupling of the incident p-polarized light to two counter-propagating surface plasmon (SP) modes. As a result of the mode interaction, the avoided crossing patterns exhibit energy and momentum gaps, which depend on the configuration of the nano-structure and the wavelength. Variations of the widths of the SP resonances and an abrupt change of the mode interaction in the vicinity of the avoided crossing region are observed. These features are explained by the model of two coupled modes and a coupling change due to switching from the higher frequency dark mode to the lower frequency bright mode for increasing wavelength of the excitation light.


Assuntos
Ouro/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
8.
Appl Opt ; 49(16): 3075-81, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20517378

RESUMO

We optimized the two-photon fluorescence (TPF) of a Coumarin 30 dye by using a feedback-controlled femtosecond pulse shaping technique. For optimization we implemented an evolutionary algorithm with a liquid crystal phase-only pulse shaper in a folded 4f setup. The optimization procedure applied to the second harmonic generation, and TPF noticeably improved the output signals and demonstrated good convergence. In addition, signal ratios involving TPF and second harmonic generation (SHG) were successfully optimized. The correlation between TPF and SHG was studied, and it was found to decrease when the pulse shape was close to the optimum. These experimental results are of interest for potential applications of coherent control to complex molecular systems as well as in biomedical imaging.

9.
Appl Opt ; 49(3): 513-9, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20090819

RESUMO

We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.


Assuntos
Lasers , Água , Modelos Lineares , Dinâmica não Linear , Fenômenos Ópticos
10.
Appl Opt ; 48(30): 5683-91, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19844301

RESUMO

The propagation of laser-excited surface plasmons along a gold film with surface roughness is directly observed via scattered light. The attenuation length of surface plasmons in a broad wavelength interval is calculated for smooth gold and silver films. The surface roughness, which was characterized with an AFM, introduces corrections to the attenuation length, angular dependence of the surface plasmon resonance, and the effective dielectric constant of the metal film. These corrections are also taken into account and discussed.

11.
Proc Natl Acad Sci U S A ; 102(42): 14976-81, 2005 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-16217021

RESUMO

We use time-resolved coherent Raman spectroscopy to obtain molecule-specific signals from dipicolinic acid (DPA), which is a marker molecule for bacterial spores. We use femtosecond laser pulses in both visible and UV spectral regions and compare experimental results with theoretical predictions. By exciting vibrational coherence on more than one mode simultaneously, we observe a quantum beat signal that can be used to extract the parameters of molecular motion in DPA. The signal is enhanced when an UV probe pulse is used, because its frequency is near-resonant to the first excited electronic state of the molecule. The capability for unambiguous identification of DPA molecules will lead to a technique for real-time detection of spores.


Assuntos
Inibidores Enzimáticos/química , Ácidos Picolínicos/análise , Análise Espectral Raman/métodos , Esporos Bacterianos/química , Biomarcadores , Matemática , Análise Espectral Raman/instrumentação
12.
Appl Opt ; 43(17): 3426-32, 2004 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15219023

RESUMO

The high sensitivity of surface-plasmon resonance (SPR) sensors allows measurements of small variations in surface potentials to be made. We studied the changes of the SPR angle when an oscillating electric potential was applied to a gold film on which surface plasmons were excited. The shifts of the SPR resonance angle were observed for various aqueous solutions as an adjacent medium. A model that takes into account the redistribution of charges at the double layer near the metal-liquid interface as well as the oxidation of the gold film was developed. It was found that a change in the electronic density at voltages below the oxidation potential and, in addition, the oxidation of the gold surface above this potential are the main mechanisms that account for the observed dependences. It was shown that relatively slow oxidation-reduction processes can explain the observed hysteresis effect. Application of these techniques to studies of dielectric properties and conformational changes of polar biomolecules, such as tubulin, are discussed.


Assuntos
Eletroquímica/métodos , Campos Eletromagnéticos , Ouro/química , Modelos Químicos , Ressonância de Plasmônio de Superfície/métodos , Água/química , Oxirredução , Soluções , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...