Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 342(4): 368-379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407543

RESUMO

Hybrid parthenogenetic animals are an exceptionally interesting model for studying the mechanisms and evolution of sexual and asexual reproduction. A diploid parthenogenetic lizard Darevskia unisexualis is a result of an ancestral cross between a maternal species Darevskia raddei nairensis and a paternal species Darevskia valentini and presents a unique opportunity for a cytogenetic and computational analysis of a hybrid karyotype. Our previous results demonstrated a significant divergence between the pericentromeric DNA sequences of the parental Darevskia species; however, an in-depth comparative study of their pericentromeres is still lacking. Here, using target sequencing of microdissected pericentromeric regions, we reveal and compare the repertoires of the pericentromeric tandem repeats of the parental Darevskia lizards. We found species-specific sequences of the major pericentromeric tandem repeat CLsat, which allowed computational prediction and experimental validation of fluorescent DNA probes discriminating parental chromosomes within the hybrid karyotype of D. unisexualis. Moreover, we have implemented a generalizable computational method, based on the optimization of the Levenshtein distance between tandem repeat monomers, for finding species-specific fluorescent probes for pericentromere staining. In total, we anticipate that our comparative analysis of Darevskia pericentromeric repeats, the species-specific fluorescent probes that we found and the pipeline that we developed will form a basis for the future detailed cytogenomic studies of a wide range of natural and laboratory hybrids.


Assuntos
DNA Satélite , Lagartos , Partenogênese , Animais , Lagartos/genética , DNA Satélite/genética , Partenogênese/genética , Hibridização Genética , Cariótipo , Especificidade da Espécie
2.
J Exp Zool B Mol Dev Evol ; 342(1): 45-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059675

RESUMO

Among 36 known chromosomal hybrid zones of the common shrew Sorex araneus, the Moscow-Seliger hybrid zone is of special interest because inter-racial complex heterozygotes (F1 hybrids) produce the longest meiotic configuration, consisting of 11 chromosomes with monobrachial homology (undecavalent or chain-of-eleven: CXI). Different studies suggest that such a multivalent may negatively affect meiotic progression and in general should significantly reduce fertility of hybrids. In this work, by immunocytochemical and electron microscopy methods, we investigated for the first time chromosome synapsis, recombination and meiotic silencing in pachytene spermatocytes of natural inter-racial heterozygous shrew males carrying CXI configurations. Despite some abnormalities detected in spermatocytes, such as associations of chromosomes, stretched centromeres, and the absence of recombination nodules in some arms of the multivalent, a large number of morphologically normal spermatozoa were observed. Possible low stringency of pachytene checkpoints may mean that even very long meiotic configurations do not cause complete sterility of such complex inter-racial heterozygotes.


Assuntos
Infertilidade , Musaranhos , Masculino , Animais , Musaranhos/genética , Cromossomos , Meiose , Infertilidade/genética , Fertilidade
3.
Life (Basel) ; 13(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36836858

RESUMO

Transcription is known to be substage-specific in meiotic prophase I. If transcription is reactivated in the mid pachytene stage in mammals when synapsis is completed, then this process is observed in the zygotene stage in insects. The process of transcriptional reactivation has been studied in a small number of different taxa of invertebrates and vertebrates. Here, for the first time, we investigate synapsis and transcription in prophase I in the European river lamprey Lampetra fluviatilis (Petromyzontiformes, Cyclostomata), which is representative of jawless vertebrates that diverged from the main branch of vertebrates between 535 and 462 million years ago. We found that not all chromosomes complete synapsis in telomeric regions. Rounded structures were detected in chromatin and in some synaptonemal complexes, but their nature could not be determined conclusively. An analysis of RNA polymerase II distribution led to the conclusion that transcriptional reactivation in lamprey prophase I is not associated with the completion of chromosome synapsis. Monomethylated histone H3K4 is localized in meiotic chromatin throughout prophase I, and this pattern has not been previously detected in animals. Thus, the findings made it possible to identify synaptic and epigenetic patterns specific to this group and to expand knowledge about chromatin epigenetics in prophase I.

4.
Animals (Basel) ; 12(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552484

RESUMO

Vipera berus is the species with the largest range of snakes on Earth and one of the largest among reptiles in general. It is also the only snake species found in the Arctic Circle. Vipera berus is the most involved species of the genus Vipera in the process of interspecific hybridization in nature. The taxonomy of the genus Vipera is based on molecular markers and morphology and requires clarification using SC-karyotyping. This work is a detailed comparative study of the somatic and meiotic karyotypes of V. berus, with special attention to DNA and protein markers associated with synaptonemal complexes. The karyotype of V. berus is a remarkable example of a bimodal karyotype containing both 16 large macrochromosomes and 20 microchromosomes. We traced the stages of the asynchronous assembly of both types of bivalents. The number of crossing-over sites per pachytene nucleus, the localization of the nucleolar organizer, and the unique heterochromatin block on the autosomal bivalent 6-an important marker-were determined. Our results show that the average number of crossing-over sites per pachytene nucleus is 49.5, and the number of MLH1 sites per bivalent 1 reached 11, which is comparable to several species of agamas.

5.
Genes (Basel) ; 13(12)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36553461

RESUMO

Nonhomologous chromosome interactions take place in both somatic and meiotic cells. Prior to this study, we had discovered special contacts through the SYCP3 (synaptonemal complex protein 3) filament between the short arms of nonhomologous acrocentrics at the pachytene stage in the Alay mole vole, and these contacts demonstrate several patterns from proximity to the complete fusion stage. Here, we investigated the nonhomologous chromosome contacts in meiotic prophase I. It turned out that such contacts do not introduce changes into the classic distribution of DNA double-strand breaks. It is noteworthy that not all meiotic contacts were localized in the H3k9me3-positive heterochromatic environment. Both in the mid zygotene and in the early-mid diplotene, three types of contacts (proximity, touching, and anchoring/tethering) were observed, whereas fusion seems to be characteristic only for pachytene. The number of contacts in the mid pachytene is significantly higher than that in the zygotene, and the distance between centromeres in nonhomologous contacts is also the smallest in mid pachytene for all types of contacts. Thus, this work provides a new insight into the behavior of meiotic contacts during prophase I and points to avenues of further research.


Assuntos
Meiose , Prófase Meiótica I , Animais , Prófase Meiótica I/genética , Roedores/genética , Arvicolinae/genética , Centrômero/genética
6.
Cells ; 10(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943883

RESUMO

Although the pericentromeric regions of chromosomes that are enriched in tandemly repeated satellite DNA represent a significant part of eukaryotic genomes, they remain understudied, which is mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability, and evolution. Thus, the idea of satellite DNA as a junk part of the genome has been refuted. The integration of data regarding molecular composition, chromosome behaviour, and the details of the in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions between pericentromeric regions from non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between centromeric regions of the X chromosome and autosomes and the associations between the centromeric regions of the autosomal bivalents that form chromocenters. We concluded that the X chromosome forms temporary synaptic associations with different autosomes in early meiotic prophase I, which can normally be found until the pachytene-diplotene, without signs of pachytene arrest. These associations are formed between the satellite-DNA-rich centromeric regions of the X chromosome and different autosomes but do not involve the satellite-DNA-poor centromeric region of the Y chromosome. We suggest the hypothetical model of X chromosome competitive replacement from such associations during synaptic correction. We showed that the centromeric region of the X chromosome in association remains free of γH2Ax-dependent chromatin inactivation, while the Y chromosome is completely inactivated. This finding highlights the predominant role of associations between satellite DNA-rich regions of different chromosomes, including the X chromosome. We suppose that X-autosomal transient associations are a manifestation of an additional synaptic disorder checkpoint. These associations are normally corrected before the late diplotene stage. We revealed that the intense spreading conditions that were applied to the spermatocyte I nuclei did not lead to the destruction of stretched chromatin fibers of elongated chromocenters enriched in satellite DNA. The tight associations that we revealed between the pericentromeric regions of different autosomal bivalents and the X chromosome may represent the basis for a mechanism for maintaining the repeats stability in the autosomes and in the X chromosome. The consequences of our findings are discussed.


Assuntos
Centrômero/metabolismo , Cromossomos de Mamíferos/metabolismo , DNA/metabolismo , Animais , DNA Satélite/metabolismo , Histonas/metabolismo , Meiose , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Cromossomo X
7.
Fungal Biol ; 125(11): 923-933, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649679

RESUMO

The development of mycological gerontology requires effective methods for assessing the biological age of fungal cells. This assessment is based on the analysis of a complex of aging and oxidative stress markers. One of the most powerful such markers is the protein carbonylation. In this study, the already known method of dry immune dot blotting is adapted for mycological studies of the content of protein carbonyl groups. After testing the method on a number of filamentous fungi species, some features of the accumulation of carbonylated proteins in mycelium were established. Among these features: (i) a weak effect of exogenous oxidative stress on the accumulation of carbonyls in a number of fungi, (ii) reversibility of the carbonyl accumulation, (iii) possibility of arbitrary regulation of carbonyl content by fungus itself and (iv) the influence of hormesis. In addition, two polar strategies for the accumulation of carbonyl modification were revealed, named Id-strategy (Indifferent) and Cn-strategy (Concern). Thus, even the analysis of one marker allows making some preliminary general assumptions and conclusions. For example, the idea that fungi can freely regulate their biological age is confirmed. This feature makes fungi very flexible in terms of responding to environmental influences and promising objects for gerontology.


Assuntos
Proteínas Fúngicas , Estresse Oxidativo , Proteínas Fúngicas/genética , Fungos/metabolismo , Micélio/metabolismo , Carbonilação Proteica
8.
Chromosoma ; 130(2-3): 113-131, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33825031

RESUMO

Sex determination in mammals is usually provided by a pair of chromosomes, XX in females and XY in males. Mole voles of the genus Ellobius are exceptions to this rule. In Ellobius tancrei, both males and females have a pair of XX chromosomes that are indistinguishable from each other in somatic cells. Nevertheless, several studies on Ellobius have reported that the two X chromosomes may have a differential organization and behavior during male meiosis. It has not yet been demonstrated if these differences also appear in female meiosis. To test this hypothesis, we have performed a comparative study of chromosome synapsis, recombination, and histone modifications during male and female meiosis in E. tancrei. We observed that synapsis between the two X chromosomes is limited to the short distal (telomeric) regions of the chromosomes in males, leaving the central region completely unsynapsed. This uneven behavior of sex chromosomes during male meiosis is accompanied by structural modifications of one of the X chromosomes, whose axial element tends to appear fragmented, accumulates the heterochromatin mark H3K9me3, and is associated with a specific nuclear body that accumulates epigenetic marks and proteins such as SUMO-1 and centromeric proteins but excludes others such as H3K4me, ubiH2A, and γH2AX. Unexpectedly, sex chromosome synapsis is delayed in female meiosis, leaving the central region unsynapsed during early pachytene. This region accumulates γH2AX up to the stage in which synapsis is completed. However, there are no structural or epigenetic differences similar to those found in males in either of the two X chromosomes. Finally, we observed that recombination in the sex chromosomes is restricted in both sexes. In males, crossover-associated MLH1 foci are located exclusively in the distal regions, indicating incipient differentiation of one of the sex chromosomes into a neo-Y. Notably, in female meiosis, the central region of the X chromosome is also devoid of MLH1 foci, revealing a lack of recombination, possibly due to insufficient homology. Overall, these results reveal new clues about the origin and evolution of sex chromosomes.


Assuntos
Arvicolinae , Caracteres Sexuais , Animais , Arvicolinae/genética , Feminino , Masculino , Meiose , Cromossomos Sexuais/genética , Cromossomo X/genética , Cromossomo Y/genética
9.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671248

RESUMO

Cyclin-dependent kinases (CDKs) are crucial regulators of the eukaryotic cell cycle. The critical role of CDK2 in the progression of meiosis was demonstrated in a single mammalian species, the mouse. We used immunocytochemistry to study the localization of CDK2 during meiosis in seven rodent species that possess hetero- and homomorphic male sex chromosomes. To compare the distribution of CDK2 in XY and XX male sex chromosomes, we performed multi-round immunostaining of a number of marker proteins in meiotic chromosomes of the rat and subterranean mole voles. Antibodies to the following proteins were used: RAD51, a member of the double-stranded DNA break repair machinery; MLH1, a component of the DNA mismatch repair system; and SUN1, which is involved in the connection between the meiotic telomeres and nuclear envelope, alongside the synaptic protein SYCP3 and kinetochore marker CREST. Using an enhanced protocol, we were able to assess the distribution of as many as four separate proteins in the same meiotic cell. We showed that during prophase I, CDK2 localizes to telomeric and interstitial regions of autosomes in all species investigated (rat, vole, hamster, subterranean mole voles, and mole rats). In sex bivalents following synaptic specificity, the CDK2 signals were distributed in three different modes. In the XY bivalent in the rat and mole rat, we detected numerous CDK2 signals in asynaptic regions and a single CDK2 focus on synaptic segments, similar to the mouse sex chromosomes. In the mole voles, which have unique XX sex chromosomes in males, CDK2 signals were nevertheless distributed similarly to the rat XY sex chromosomes. In the vole, sex chromosomes did not synapse, but demonstrated CDK2 signals of varying intensity, similar to the rat X and Y chromosomes. In female mole voles, the XX bivalent had CDK2 pattern similar to autosomes of all species. In the hamster, CDK2 signals were revealed in telomeric regions in the short synaptic segment of the sex bivalent. We found that CDK2 signals colocalize with SUN1 and MLH1 signals in meiotic chromosomes in rats and mole voles, similar to the mouse. The difference in CDK2 manifestation at the prophase I sex chromosomes can be considered an example of the rapid chromosome evolution in mammals.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Mamíferos/metabolismo , Prófase Meiótica I , Cromossomos Sexuais/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Feminino , Masculino , Modelos Biológicos , Estágio Paquíteno , Ratos , Espermatócitos/metabolismo
10.
Mol Reprod Dev ; 88(2): 119-127, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33438277

RESUMO

Parthenogenetic species of Caucasian rock lizards of the genus Darevksia are important evidence for reticulate evolution and speciation by hybridization in vertebrates. Female-only lineages formed through interspecific hybridization have been discovered in many groups. Nevertheless, critical mechanisms of oogenesis and specifics of meiosis that provide long-term stability of parthenogenetic species are still unknown. Here we report cytogenetic characteristics of somatic karyotypes and meiotic prophase I nuclei in the diploid parthenogenetic species Darevskia unisexualis from the new population "Keti" in Armenia which contains an odd number of chromosomes 2n = 37, instead of the usual 2n = 38. We revealed 36 acrocentric chromosomes and a single metacentric autosomal chromosome, resulting from Robertsonian translocation. Comparative genomic hybridization revealed that chromosome fusion occurred between two chromosomes inherited from the maternal species, similar to another parthenogenetic species D. rostombekowi. To trace the chromosome behaviour in meiosis, we performed an immunocytochemical study of primary oocytes' spread nuclei and studied chromosome synapsis during meiotic prophase I in D. unisexualis based on analysis of synaptonemal complexes (SCs). We found meiotic SC-trivalent composed of one metacentric and two acrocentric chromosomes. We confirmed that the SC was assembled between homeologous chromosomes inherited from two parental species. Immunostaining of the pachytene and diplotene nuclei revealed a mismatch repair protein MLH1 loaded to all autosomal SC bivalents. Possible mechanisms of meiotic recombination between homeologous chromosomes are discussed.


Assuntos
Lagartos/genética , Prófase Meiótica I/genética , Proteína 1 Homóloga a MutL/genética , Animais , Células Cultivadas , Reparo de Erro de Pareamento de DNA , Rearranjo Gênico , Lagartos/fisiologia , Partenogênese , Complexo Sinaptonêmico
11.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076404

RESUMO

Genome functioning in hybrids faces inconsistency. This mismatch is manifested clearly in meiosis during chromosome synapsis and recombination. Species with chromosomal variability can be a model for exploring genomic battles with high visibility due to the use of advanced immunocytochemical methods. We studied synaptonemal complexes (SC) and prophase I processes in 44-chromosome intraspecific (Ellobius tancrei × E. tancrei) and interspecific (Ellobius talpinus × E. tancrei) hybrid mole voles heterozygous for 10 Robertsonian translocations. The same pachytene failures were found for both types of hybrids. In the intraspecific hybrid, the chains were visible in the pachytene stage, then 10 closed SC trivalents formed in the late pachytene and diplotene stage. In the interspecific hybrid, as a rule, SC trivalents composed the SC chains and rarely could form closed configurations. Metacentrics involved with SC trivalents had stretched centromeres in interspecific hybrids. Linkage between neighboring SC trivalents was maintained by stretched centromeric regions of acrocentrics. This centromeric plasticity in structure and dynamics of SC trivalents was found for the first time. We assume that stretched centromeres were a marker of altered nuclear architecture in heterozygotes due to differences in the ancestral chromosomal territories of the parental species. Restructuring of the intranuclear organization and meiotic disturbances can contribute to the sterility of interspecific hybrids, and lead to the reproductive isolation of studied species.


Assuntos
Arvicolinae/genética , Hibridização Genética , Recombinação Genética , Complexo Sinaptonêmico , Translocação Genética , Animais , Centrômero/genética , Cariótipo
12.
Chromosoma ; 129(3-4): 275-283, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33123817

RESUMO

Darevskia rostombekowi, the most outstanding of the seven known parthenogenetic species in the genus Darevskia, is the result of an ancestral cross between two bisexual species Darevskia raddei and Darevskia portschinskii. The chromosomal set of this species includes a unique submetacentric autosomal chromosome; the origin of this chromosome was unresolved as only acrocentric chromosomes are described in the karyotypes of Darevskia genus normally. Here, we applied a suite of molecular cytogenetic techniques, including the mapping of telomeric (TTAGGG) n repeats using fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and whole-chromosome painting (WCP) in both D. rostombekowi and parental (D. portschinskii and D. raddei) species. The obtained results in total suggest that a de novo chromosomal rearrangement via Robertsonian translocation (centric fusion) between two maternal (D. raddei) acrocentric chromosomes of different size was involved in the formation of this unique submetacentric chromosome present in the parthenogenetic species D. rostombekowi. Our findings provide new data in specific and rapid evolutional processes of a unisexual reptile species karyotype.


Assuntos
Evolução Molecular , Hibridização Genética , Cariótipo , Lagartos/genética , Partenogênese/genética , Translocação Genética , Animais , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Feminino , Hibridização in Situ Fluorescente , Herança Materna , Cromossomos Sexuais , Telômero
13.
Sci Rep ; 10(1): 8697, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457493

RESUMO

Darevskia rock lizards is a unique complex taxa, including more than thirty species, seven of which are parthenogenetic. In mixed populations of Darevskia lizards, tri- and tetraploid forms can be found. The most important issues in the theory of reticulate evolution of Darevskia lizards are the origin of parthenogenetic species and their taxonomic position. However, there is little data on how meiosis proceeds in these species. The present work reports the complex results of cytogenetics in a diploid parthenogenetic species - D. unisexualis. Here we detail the meiotic prophase I progression and the specific features оf mitotic chromosomes organization. The stages of meiosis prophase I were investigated by immunocytochemical analysis of preparations obtained from isolated primary oocytes of D. unisexualis in comparison with maternal species D. raddei nairensis. It has been shown that in D. unisexualis at the leptotene-zygotene stages the axial elements and the synaptonemal complex (SC) form typical "bouquets". At the pachytene-diplotene stage, 18 autosomal SC-bivalents and thickened asynapted sex Z and w univalents were observed. The presence of SYCP1 protein between the lateral elements of autosomal chromosomes proved the formation of assembled SCs. Comparative genomic hybridization (CGH) on the mitotic metaphase chromosomes of D. unisexualis was carried out using the genomic DNA isolated from the parental species D. raddei nairensis and D. valentini. In the pericentromeric regions of half of the mitotic chromosomes of D. unisexualis, specific regions inherited from maternal species have been found. Following our results, we suggest a model for diploid germ cells formation from diploid oocytes without premeiotic duplication of chromosomes in the oogenesis of diploid parthenogenetic lizards D. unisexualis. Taken as a whole, our findings confirm the hybrid nature of D. unisexualis and shed light on heterozygosity and automixis in diploid parthenogenetic forms.


Assuntos
Hibridização Genômica Comparativa/métodos , Lagartos/genética , Animais , Cromossomos , Hibridização in Situ Fluorescente , Cariótipo , Lagartos/crescimento & desenvolvimento , Meiose , Oócitos/metabolismo , Oogênese
14.
Genes (Basel) ; 11(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252399

RESUMO

Robertsonian translocations are common chromosomal alterations. Chromosome variability affects human health and natural evolution. Despite the significance of such mutations, no mechanisms explaining the emergence of such translocations have yet been demonstrated. Several models have explored possible changes in interphase nuclei. Evidence for non-homologous chromosomes end joining in meiosis is scarce, and is often limited to uncovering mechanisms in damaged cells only. This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations. Immunocytochemical staining of spermatocytes demonstrated the presence of four contact types for non-homologous chromosomes in meiotic prophase I: (1) proximity, (2) touching, (3) anchoring/tethering, and (4) fusion. Our results suggest distinct mechanisms for chromosomal interactions in meiosis. Thus, we propose to change the translocation mechanism model from 'contact first' to 'contact first in meiosis'.


Assuntos
Arvicolinae/genética , Cromossomos/genética , Meiose/genética , Translocação Genética/genética , Animais , Núcleo Celular/genética , Reparo do DNA por Junção de Extremidades/genética , Humanos , Interfase/genética , Prófase Meiótica I/genética , Mutação/genética
15.
Mycologia ; 112(3): 455-473, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32238121

RESUMO

Nitrogen in sufficient quantities is strictly necessary for all living organisms. In this study, the ability of some xylotrophic basidiomycetes to grow extremely long on a solid growth medium full of carbon nutrition but lacking a nitrogen source in its composition was discovered. The nitrogen oligotrophy of wood-decaying fungi is associated with their adaptation to live in a wood substrate, which is also deficient in nitrogen content. This nitrogen-depleted cultural growth is called "pseudo-foraging" and can be used as a simplified model of wood-decaying growth. Four main nitrogen-obtaining and -conserving strategies (nitrogen concentration, using alternative sources of nitrogen, economy of growth, and nutritional recycling), which are attributed to wood-colonizing xylotrophs in the literature, were revised studying the pseudo-foraging model. Based on the results, some aspects of the behavior of xylotrophs deep in undecomposed wood were predicted. For example, one of the results is that for pseudo-foraging xylotrophs, the main way to obtain nitrogen is its concentration in their mycelium from the nutrient medium in which nitrogen is contained in the impurities of the components of the medium. The result suggests that in bulk solid wood, the nitrogen concentration strategy also dominates the strategy of using diazotrophic and other alternative nitrogen. In addition, three individual unprecedented mechanisms, which supposedly help the xylotrophic fungi to colonize wood in nature (generation of fine mycelium, macrovesicular endocytosis, formation and conversion of super-elongated mitochondria), were investigated in the laboratory.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Fixação de Nitrogênio , Madeira/microbiologia , Federação Russa
16.
PeerJ ; 7: e6360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723630

RESUMO

According to the synthesis of 30 years of multidisciplinary studies, parthenogenetic species of rock lizards of genus Darevskia were formed as a result of different combination patterns of interspecific hybridization of the four bisexual parental species: Darevskia raddei, D. mixta, D. valentini, and D. portschinskii. In particular, D. portschinskii and D. raddei are considered as the parental species for the parthenogenetic species D. rostombekowi. Here for the first time, we present the result of comparative immunocytochemical study of primary spermatocyte nuclei spreads from the leptotene to diplotene stages of meiotic prophase I in two species: D. portschinskii and D. raddei. We observed similar chromosome lengths for both synaptonemal complex (SC) karyotypes as well as a similar number of crossing over sites. However, unexpected differences in the number and distribution of anti-centromere antibody (ACA) foci were detected in the SC structure of bivalents of the two species. In all examined D. portschinskii spermatocyte nuclei, one immunostained centromere focus was detected per SC bivalent. In contrast, in almost every studied D. raddei nuclei we identified three to nine SCs with additional immunostained ACA foci per SC bivalent. Thus, the obtained results allow us to identify species-specific karyotype features, previously not been detected using conventional mitotic chromosome analysis. Presumably the additional centromere foci are result of epigenetic chromatin modifications. We assume that this characteristic of the D. raddei karyotype could represent useful marker for the future studies of parthenogenetic species hybrid karyotypes related to D. raddei.

17.
Genes (Basel) ; 9(6)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29794981

RESUMO

The Y chromosome in mammals is variable, even in closely related species. Middle East blind mole rats Nannospalax ehrenbergi demonstrate autosomal variability, which probably leads to speciation. Here, we compare the mitotic and meiotic chromosomes of mole rats. For the first time, we studied the behavior of their sex chromosomes in the meiotic prophase I using electron microscopy and immunocytochemical analysis. Unexpectedly, the sex chromosomes of the 52- and 60-chromosome forms of mole rats showed different synaptic and recombination patterns due to distinct locations of the centromeres on the Y chromosomes. The absence of recombination in the 60-chromosome form, the asymmetric synapsis, and the short-term disturbance in the synaptic co-orientation of the telomeric regions of the X and Y chromosomes were revealed as specific features of mole rat sex bivalents. We suggest several scenarios of Y chromosome alteration in connection with species differentiation in mole rats.

18.
Genes (Basel) ; 8(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099806

RESUMO

This study reports on extensive experimental material covering more than 30 years of studying the genetics of mole voles. Sex chromosomes of Ellobius demonstrate an extraordinary case of mammalian sex chromosomes evolution. Five species of mole voles own three types of sex chromosomes; typical for placentals: XY♂/XX♀; and atypical X0♂/X0♀; or XX♂/XX♀. Mechanisms of sex determination in all Ellobius species remain enigmatic. It was supposed that the Y chromosome was lost twice and independently in subgenera Bramus and Ellobius. Previous to the Y being lost, the X chromosome in distinct species obtained some parts of the Y chromosome, with or without Sry, and accumulated one or several copies of the Eif2s3y gene. Along with enormous variations of sex chromosomes, genes of sex determination pathway and autosomes, and five mole vole species demonstrate ability to establish different meiotic mechanisms, which stabilize their genetic systems and make it possible to overcome the evolutionary deadlocks.

19.
Comp Cytogenet ; 11(4): 727-745, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114363

RESUMO

Here we focus on the XY1Y2 condition in male common shrew Sorex araneus Linnaeus, 1758, applying electron microscopy and immunocytochemistry for a comprehensive analysis of structure, synapsis and behaviour of the sex trivalent in pachytene spermatocytes. The pachytene sex trivalent consists of three distinct parts: short and long synaptic SC fragments (between the X and Y1 and between the X and Y2, respectively) and a long asynaptic region of the X in-between. Chromatin inactivation was revealed in the XY1 synaptic region, the asynaptic region of the X and a very small asynaptic part of the Y2. This inactive part of the sex trivalent, that we named the 'head', forms a typical sex body and is located at the periphery of the meiotic nucleus at mid pachytene. The second part or 'tail', a long region of synapsis between the X and Y2 chromosomes, is directed from the periphery into the nucleus. Based on the distribution patterns of four proteins involved in chromatin inactivation, we propose a model of meiotic silencing in shrew sex chromosomes. Thus, we conclude that pachytene sex chromosomes are structurally and functionally two different chromatin domains with specific nuclear topology: the peripheral inactivated 'true' sex chromosome regions (part of the X and the Y1) and more centrally located transcriptionally active autosomal segments (part of the X and the Y2).

20.
Genes (Basel) ; 8(6)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28538689

RESUMO

Knowing whether triploid hybrids resulting from natural hybridization of parthenogenetic and bisexual species are fertile is crucial for understanding the mechanisms of reticulate evolution in rock lizards. Here, using males of the bisexual diploid rock lizard species Darevskia raddei nairensis and Darevskia valentini and a triploid hybrid male Darevskia unisexualis × Darevskia valentini, we performed karyotyping and comparative immunocytochemistry of chromosome synapsis and investigated the distribution of RAD51 and MLH1 foci in spread spermatocyte nuclei in meiotic prophase I. Three chromosome sets were found to occur in cell nuclei in the D. unisexualis × D. valentini hybrid, two originating from a parthenogenetic D. unisexualis female and one from the D. valentini male. Despite this distorted chromosome synapsis and incomplete double-strand breaks repair in meiotic prophase I, the number of mismatch repair foci in the triploid hybrid was enough to pass through both meiotic divisions. The defects in synapsis and repair did not arrest meiosis or spermatogenesis. Numerous abnormal mature spermatids were observed in the testes of the studied hybrid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...