Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889719

RESUMO

Swinepox virus (SWPV) is the only member of the Suipoxvirus genus of the Poxviridae family and is an etiologic agent of a worldwide disease specific for domestic and wild pigs. SWPV outbreaks are sporadically recorded in different regions of Russia. In 2013, an outbreak of the disease causing skin lesions was registered on a pig farm in Russia. The presence of SWPV in the scab samples was assessed by in-house real-time PCR, reference PCR amplification, and nucleotide sequencing of the viral late transcription factor-3 (VLTF-3) gene and was then confirmed by virus isolation. Thus, the in-house real-time PCR proposed in this study could serve as a useful tool for the rapid specific detection of the swinepox virus. In the study, it has been demonstrated for the first time that nasal and oral swabs can be used for PCR diagnosis of the disease and for swinepox virus isolation. Phylogenetic analysis revealed that the isolated virus was closely related to SWPV isolates registered in Germany, USA, and Brazil, and slightly differed from the Indian isolates. During experimental infection of pigs, a low pathogenicity of the Russian isolate was observed. Our data provides the first report on the isolation and characterization of swinepox virus in Russia.

2.
Animals (Basel) ; 13(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37370512

RESUMO

African swine fever (ASF) is an infectious disease that causes the most significant losses to the pig industry. One of the effective methods for combating this disease could be the development of vaccines. To date, experimental vaccines based on the use of live attenuated strains of the ASF virus (ASFV) obtained by the deletion of viral genes responsible for virulence are the most effective. Deletion of the EP402R gene encoding a CD2-like protein led to the attenuation of various strains of the ASFV, although the degree of attenuation varies among different isolates. Here we have shown that the deletion of the EP402R gene from the genome of a high-virulent Congo isolate did not change either the virulence of the virus or its ability to replicate in the swine macrophage cell cultures in vitro. However, in vivo, animals infected with ΔCongo-v_CD2v had a delay in the onset of the disease and viremia compared to animals infected with the parental strain. Thus, deletion of the CD2 gene in different isolates of the ASFV has a different effect on the virulence of the virus, depending on its genetic background.

3.
Viruses ; 15(6)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376672

RESUMO

African swine fever (ASF) is a contagious disease of pigs caused by the ASF virus (ASFV). The main problem in the field of ASF control is the lack of vaccines. Attempts to obtain vaccines by attenuating the ASFV on cultured cell lines led to the production of attenuated viruses, some of which provided protection against infection with a homologous virus. Here we report on the biological and genomic features of the attenuated Congo-a (KK262) virus compared to its virulent homologue Congo-v (K49). Our results showed differences in in vivo replication and virulence of Congo-a. However, the attenuation of the K49 virus did not affect its ability to replicate in vitro in the primary culture of pig macrophages. Complete genome sequencing of the attenuated KK262 strain revealed an 8,8 kb deletion in the left variable region of the genome compared to the virulent homologue K49. This deletion concerned five genes of MGF360 and three genes of MGF505. In addition, three inserts in the B602L gene, genetic changes in intergenic regions and missense mutations in eight genes were detected. The data obtained contribute to a better understanding of ASFV attenuation and identification of potential virulence genes for further development of effective vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Sorogrupo , Proteínas Virais/genética , Vacinas Virais/genética , Genótipo , Vacinas Atenuadas/genética
4.
Front Vet Sci ; 9: 936978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032295

RESUMO

African swine fever is a deadly disease of pigs caused by the large DNA virus (ASFV). Despite intensive research, little is known about the molecular mechanisms of ASFV pathogenesis. Transcriptome analysis of host and viral genes in infected macrophages revealed changes in expression of genes involved in various biological processes, including immune response, inflammatory response and apoptosis. To understand the mechanisms of virus pathogenesis, we used transcriptome analysis to identify the differences in gene expression between peripheral blood monocytes (PBMCs) isolated from pigs immunized with attenuated Congo ASFV strain (KK262), and then infected in vitro with virulent homologous Congo strain (K49) or heterologous Mozambique strain (M78). We found that overexpression of IFN-γ was detected only in cells infected with M78, although the expression of interferon-stimulated genes was increased in both types of cells. In addition, up-regulation of pro-inflammatory cytokines and chemokines was found in PBMCs infected with the heterologous strain M78, in contrast to the cells infected with K49. These data may indicate the beginning of an early immune response in cells infected with a heterologous, but not homologous strain. Transcriptome analysis revealed down-regulation of genes involved in endocytosis and phagocytosis in cells infected with the K49 strain, but not in PBMCs infected with M78. On the contrary, we detected activation of endoplasmic reticulum stress response genes in cells infected with a homologous strain, but not in cells infected with a heterologous strain. This study is the first attempt to determine the differences in the response to ASF infection between homologous and heterologous strains at the cellular level. Our results showed that not only genes of the immune response, but also genes involved in endocytosis and cellular stress response may be important for the formation of cross-protective immunity. This data may be useful for vaccine development or testing of candidate vaccines.

5.
Arch Virol ; 167(11): 2377-2380, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920982

RESUMO

African swine fever is one of the most feared infectious diseases in the pig industry. African swine fever virus (ASFV) is an enveloped, cytoplasmic double-stranded DNA virus and the only member of the family Asfarviridae. Although ASFV is known to have been circulating on the African continent since at least 1921, little is known about the genetic characteristics of historical ASFV strains isolated in sub-Saharan Africa. The few complete ASFV genome sequences obtained from African historical isolates have demonstrated genetic diversity, but the available data are limited and insufficient for fully understanding the molecular evolution and continental spread of ASFV. Here, we report the complete genome sequence of the virulent ASFV strain K49, collected during an outbreak in the Belgian Congo (now the Democratic Republic of the Congo) in 1949. The complete genome sequence of ASFV strain K49 was determined using an Illumina HiSeq platform and is 189,523 bp in length with a mean GC content of 38.43%, with 189 genes annotated. This is the first reported complete genome sequence of an ASFV serogroup 2 isolate. Phylogenetic analysis demonstrated genetic divergence within genotype I, and strain K49 formed a separate branch from other ASFV genotype I isolates.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/epidemiologia , Animais , DNA , República Democrática do Congo/epidemiologia , Genótipo , Filogenia , Sus scrofa , Suínos
6.
Microorganisms ; 9(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204157

RESUMO

Lumpy skin disease (LSD) is an important animal disease with significant health and economic impacts. It is considered a notifiable disease by the OIE. Attenuated strains of LSDV have been successfully used as vaccines (LAV) but can also produce mild or systemic reactions. Vaccination campaigns using LAVs are therefore only viable if accompanying DIVA assays are available. Two DIVA qPCR assays able to distinguish Neethling-based LAVs and wild-type LSDV were developed. Upon validation, both assays were shown to have high sensitivity and specificity with a diagnostic performance comparable to other published DIVA assays. This confirmed their potential as reliable tools to confirm infection in animals during vaccination campaigns based on Neethling vaccine strains.

7.
Viruses ; 13(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203302

RESUMO

African swine fever (ASF) is an emerging disease threat to the swine industry worldwide. There is no vaccine against ASF, and progress is hindered by a lack of knowledge concerning the extent of ASFV strain diversity and the viral antigens conferring type-specific protective immunity in pigs. We have previously demonstrated that homologous ASFV serotype-specific proteins CD2v (EP402R) and/or C-type lectin are required for protection against challenge with the virulent ASFV strain Congo (Genotype I, Serogroup 2), and we have identified T-cell epitopes on CD2v which may be associated with serotype-specific protection. Here, using a cell-culture adapted derivative of the ASFV strain Congo (Congo-a) with specific deletion of the EP402R gene (ΔCongoCD2v) in swine vaccination/challenge experiments, we demonstrated that deletion of the EP402R gene results in the failure of ΔCongoCD2v to induce protection against challenge with the virulent strain Congo (Congo-v). While ΔCongoCD2v growth kinetics in COS-1 cells and primary swine macrophage culture were almost identical to parental Congo-a, replication of ΔCongoCD2v in vivo was significantly reduced compared with parental Congo-a. Our data support the idea that the CD2v protein is important for the ability of homologous live-attenuated vaccines to induce protective immunity against the ASFV strain Congo challenge in vivo.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Deleção de Genes , Proteínas Virais/genética , Vacinas Virais/imunologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/patogenicidade , Animais , Anticorpos Antivirais/sangue , Células COS , Chlorocebus aethiops , Feminino , Genes Virais , Hemaglutininas Virais/genética , Hemaglutininas Virais/imunologia , Macrófagos/virologia , Masculino , Suínos , Vacinas Atenuadas/imunologia , Proteínas Virais/imunologia , Replicação Viral
8.
Arch Virol ; 162(10): 3081-3088, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28691128

RESUMO

African swine fever (ASF) is one of the most devastating diseases affecting the swine industry worldwide. No effective vaccine is currently available for disease prevention and control. Although live attenuated vaccines (LAV) have demonstrated great potential for immunizing against homologous strains of African swine fever virus (ASFV), adverse reactions from LAV remain a concern. Here, by using a homologous ASFV Congo strain system, we show passage-attenuated Congo LAV to induce an efficient protective immune response against challenge with the virulent parental Congo strain. Notably, only the parental challenge Congo strain was identified in blood and organs of recovered pigs through B602L gene PCR, long-range PCR, nucleotide sequencing and virus isolation. Thus, despite the great protective potential of homologous attenuated ASFV strain, the challenge Congo strain can persist for weeks in recovered pigs and a recrudescence of virulent virus at late time post-challenge may occur.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Sequência de Aminoácidos , Animais , Suínos , Vacinas Atenuadas/imunologia , Carga Viral , Proteínas Virais , Vacinas Virais/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...