Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 32(12): 1210-1220, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826361

RESUMO

Pancreatic ß-cells secrete insulin, which controls blood glucose levels, and defects in insulin secretion are responsible for diabetes mellitus. The actin cytoskeleton and some myosins support insulin granule trafficking and release, although a role for the class I myosin Myo1b, an actin- and membrane-associated load-sensitive motor, in insulin biology is unknown. We found by immunohistochemistry that Myo1b is expressed in islet cells of the rat pancreas. In cultured rat insulinoma 832/13 cells, Myo1b localized near actin patches, the trans-Golgi network (TGN) marker TGN38, and insulin granules in the perinuclear region. Myo1b depletion by small interfering RNA in 832/13 cells reduced intracellular proinsulin and insulin content and glucose-stimulated insulin secretion (GSIS) and led to the accumulation of (pro)insulin secretory granules (SGs) at the TGN. Using an in situ fluorescent pulse-chase strategy to track nascent proinsulin, Myo1b depletion in insulinoma cells reduced the number of (pro)insulin-containing SGs budding from the TGN. The studies indicate for the first time that in pancreatic ß-cells Myo1b controls GSIS at least in part by mediating an early stage in insulin granule trafficking from the TGN.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Miosina Tipo I/metabolismo , Rede trans-Golgi/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Miosina Tipo I/fisiologia , Transporte Proteico , Ratos , Vesículas Secretórias/metabolismo , Rede trans-Golgi/fisiologia
2.
PLoS One ; 10(9): e0138012, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26361046

RESUMO

Amino acid transporters (AATers) in the brush border of the apical plasma membrane (APM) of renal proximal tubule (PT) cells mediate amino acid transport (AAT). We found that the membrane-associated class I myosin myosin 1b (Myo1b) localized at the apical brush border membrane of PTs. In opossum kidney (OK) 3B/2 epithelial cells, which are derived from PTs, expressed rat Myo1b-GFP colocalized in patched microvilli with expressed mouse V5-tagged SIT1 (SIT1-V5), which mediates neutral amino acid transport in OK cells. Lentivirus-mediated delivery of opossum Myo1b-specific shRNA resulted in knockdown (kd) of Myo1b expression, less SIT1-V5 at the APM as determined by localization studies, and a decrease in neutral AAT as determined by radioactive uptake assays. Myo1b kd had no effect on Pi transport or noticeable change in microvilli structure as determined by rhodamine phalloidin staining. The studies are the first to define a physiological role for Myo1b, that of regulating renal AAT by modulating the association of AATers with the APM.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/metabolismo , Túbulos Renais Proximais/metabolismo , Miosina Tipo I/metabolismo , Gambás/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Túbulos Renais Proximais/ultraestrutura , Camundongos , Microvilosidades/metabolismo , Miosina Tipo I/genética , Ratos
3.
Biochemistry ; 53(49): 7835-45, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25402663

RESUMO

Motor activity of myosin III is regulated by autophosphorylation. To investigate the role of the kinase activity on the transporter function of myosin IIIA (Myo3A), we identified the phosphorylation sites of kinase domain (KD), which is responsible for the regulation of kinase activity and thus motor function. Using mass spectrometry, we identified six phosphorylation sites in the KD, which are highly conserved among class III myosins and Ste20-related misshapen (Msn) kinases. Two predominant sites, Thr¹84 and Thr¹88, in KD are important for phosphorylation of the KD as well as the motor domain, which regulates the affinity for actin. In the Caco2 cells, the full-length human Myo3A (hMyo3AFull) markedly enlarged the microvilli, although it did not show discrete localization within the microvilli. On the other hand, hMyo3AFull(T184A) and hMyo3AFull(T188A) both showed clear localization at the microvilli tips. Our results suggest that Myo3A induces large actin bundle formation to form microvilli, and phosphorylation of KD at Thr¹84 and Thr¹88 is critical for the kinase activity of Myo3A, and regulation of Myo3A translocation to the tip of microvilli. Retinal extracts potently dephosphorylate both KD and motor domain without IQ motifs (MDIQo), which was inhibited by okadaic acid (OA) with nanomolar range and by tautomycetin (TMC) with micromolar range. The results suggest that Myo3A phosphatase is protein phosphatase type 2A (PP2A). Supporting this result, recombinant PP2Ac potently dephosphorylates both KD and MDIQo. We propose that the phosphorylation-dephosphorylation mechanism plays an essential role in mediating the transport and actin bundle formation and stability functions of hMyo3A.


Assuntos
Enterócitos/metabolismo , Microvilosidades/metabolismo , Modelos Moleculares , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Processamento de Proteína Pós-Traducional , Citoesqueleto de Actina/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Células CACO-2 , Domínio Catalítico , Enterócitos/efeitos dos fármacos , Enterócitos/ultraestrutura , Inibidores Enzimáticos/farmacologia , Furanos/farmacologia , Humanos , Lipídeos/farmacologia , Microvilosidades/efeitos dos fármacos , Microvilosidades/ultraestrutura , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Cadeias Pesadas de Miosina/antagonistas & inibidores , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/antagonistas & inibidores , Miosina Tipo III/química , Miosina Tipo III/genética , Ácido Okadáico/farmacologia , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Treonina/química
4.
J Biol Chem ; 285(36): 27686-93, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20610386

RESUMO

Myosin 1b (Myo1b), a class I myosin, is a widely expressed, single-headed, actin-associated molecular motor. Transient kinetic and single-molecule studies indicate that it is kinetically slow and responds to tension. Localization and subcellular fractionation studies indicate that Myo1b associates with the plasma membrane and certain subcellular organelles such as endosomes and lysosomes. Whether Myo1b directly associates with membranes is unknown. We demonstrate here that full-length rat Myo1b binds specifically and with high affinity to phosphatidylinositol 4,5-bisphosphate (PIP(2)) and phosphatidylinositol 3,4,5-triphosphate (PIP(3)), two phosphoinositides that play important roles in cell signaling. Binding is not Ca(2+)-dependent and does not involve the calmodulin-binding IQ region in the neck domain of Myo1b. Furthermore, the binding site is contained entirely within the C-terminal tail region, which contains a putative pleckstrin homology domain. Single mutations in the putative pleckstrin homology domain abolish binding of the tail domain of Myo1b to PIP(2) and PIP(3) in vitro. These same mutations alter the distribution of Myc-tagged Myo1b at membrane protrusions in HeLa cells where PIP(2) localizes. In addition, we found that motor activity is required for Myo1b localization in filopodia. These results suggest that binding of Myo1b to phosphoinositides plays an important role in vivo by regulating localization to actin-enriched membrane projections.


Assuntos
Actinas/metabolismo , Extensões da Superfície Celular/metabolismo , Miosinas/metabolismo , Fosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Sanguíneas/química , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Dados de Sequência Molecular , Movimento , Miosinas/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipase C delta/química , Fosfolipase C delta/metabolismo , Fosfoproteínas/química , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Pseudópodes/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Biochemistry ; 49(17): 3695-702, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20192276

RESUMO

Previous findings suggested that the motor activity of human myosin IIIA (HM3A) is influenced by phosphorylation [Kambara, T., et al. (2006) J. Biol. Chem. 281, 37291-37301]; however, how phosphorylation controls the motor activity of HM3A is obscure. In this study, we clarify the kinetic basis of the effect of phosphorylation on the ATP hydrolysis cycle of the motor domain of HM3A (huM3AMD). The affinity of human myosin IIIA for filamentous actin in the presence of ATP is more than 100-fold decreased by phosphorylation, while the maximum rate of ATP turnover is virtually unchanged. The rate of release of ADP from acto-phosphorylated huM3AMD is 6-fold greater than the overall cycle rate, and thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form is markedly increased by phosphorylation by 30-fold. The dissociation constant for dissociation of the ATP-bound form of huM3AMD from actin is greatly increased by phosphorylation, and this result agrees well with the significant increase in the K(actin) value of the steady-state ATPase reaction. The rate constant of the P(i) off step is greater than 60 s(-1), suggesting that this step does not limit the overall ATP hydrolysis cycle rate. Our kinetic model indicates that phosphorylation induces the dissociation of huM3AMD from actin during the ATP hydrolysis cycle, and this is due to the phosphorylation-dependent marked decrease in the affinity of huM3AMD.ATP for actin and the increase in the ATP hydrolysis rate of huM3AMD in the actin-dissociated state. These results suggest that the phosphorylation of myosin IIIA significantly lowers the duty ratio, which may influence the cargo transporting ability of the native form of myosin IIIA that contains the ATP-independent actin binding site in the tail.


Assuntos
Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Catálise , Humanos , Hidrólise , Cinética , Cadeias Pesadas de Miosina/química , Miosina Tipo III/química , Fosforilação , Estrutura Terciária de Proteína
6.
Arch Biochem Biophys ; 456(2): 194-203, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17126281

RESUMO

Zipper-interacting protein kinase (ZIP kinase) has been thought to be involved in apoptosis and the C-terminal leucine zipper motif is important for its function. Recent studies have revealed that ZIP kinase also plays a role in regulating myosin phosphorylation. Here, we found novel ZIP kinase isoform in which the C-terminal non-kinase domain containing a leucine zipper is eliminated (hZIPK-S). hZIPK-S binds to myosin phosphatase targeting subunit 1(MYPT1) similar to the long isoform (hZIPK-L). In addition, we found that hZIPK-S as well as hZIPK-L bind to myosin. These results indicate that a leucine zipper is not critical for the binding of ZIP kinase to MYPT1 and myosin. Consistently, hZIPK-S localized with stress-fibers where they co-localized with myosin. The residues 278-311, the C-terminal side of the kinase domain common to the both isoforms, is involved in the binding to MYPT1, while the myosin binding domain is within the kinase domain. These results suggest that the newly found hZIPK-S as well as the long isoform play an important role in the regulation of myosin phosphorylation.


Assuntos
Zíper de Leucina/fisiologia , Músculo Liso/enzimologia , Miosinas/química , Miosinas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Bexiga Urinária/enzimologia , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Células Cultivadas , Proteínas Quinases Associadas com Morte Celular , Ativação Enzimática , Estabilidade Enzimática , Humanos , Isoenzimas/química , Ligação Proteica
7.
J Biol Chem ; 281(49): 37291-301, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17012748

RESUMO

Myosin IIIA is expressed in photoreceptor cells and thought to play a critical role in phototransduction processes, yet its function on a molecular basis is largely unknown. Here we clarified the kinetic mechanism of the ATPase cycle of human myosin IIIA. The steady-state ATPase activity was markedly activated approximately 10-fold with very low actin concentration. The rate of ADP off from actomyosin IIIA was 10 times greater than the overall cycling rate, thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form was very slow, but the rate was markedly accelerated by actin binding. The dissociation constant of the ATP-bound form of myosin IIIA from actin is submicromolar, which agrees well with the low K(actin). These results indicate that ATP hydrolysis predominantly takes place in the actin-bound form for actomyosin IIIA ATPase reaction. The obtained K(actin) was much lower than the previously reported one, and we found that the autophosphorylation of myosin IIIA dramatically increased the K(actin), whereas the V(max) was unchanged. Our kinetic model indicates that both the actin-attached hydrolysis and the P(i) release steps determine the overall cycle rate of the dephosphorylated form. Although the stable steady-state intermediates of actomyosin IIIA ATPase reaction are not typical strong actin-binding intermediates, the affinity of the stable intermediates for actin is much higher than conventional weak actin binding forms. The present results suggest that myosin IIIA can spend a majority of its ATP hydrolysis cycling time on actin.


Assuntos
Actinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Hidrólise , Técnicas In Vitro , Cinética , Modelos Biológicos , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/química , Miosina Tipo III/genética , Miosinas/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 278(24): 21352-60, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12672820

RESUMO

The class III myosin is the most divergent member of the myosin superfamily, having a domain with homology to a protein kinase. However, the function of class III myosin at a molecular level is not known at all, and it has been questioned whether it is actually an actin-based motor molecule. Here, we showed that human myosin III has an ATPase activity that is significantly activated by actin (20-fold) with Kactin of 112 microm and Vmax of 0.34 s-1, indicating the mechanoenzymatic activity of myosin III. Furthermore, we found that human myosin III has actin translocating activity (0.11 +/- 0.05 microm/s) using an in vitro actin gliding assay, and it moves toward the plus end of actin filaments. Myosin III containing calmodulin as the light chain subunit showed a protein kinase activity and underwent autophosphorylation. The autophosphorylation was the intramolecular process, and the sites were at the C-terminal end of the motor domain. Autophosphorylation significantly activated the kinase activity, although it did not affect the ATPase activity. The present study is the first report that clearly demonstrates that the class III myosin is an actin-based motor protein having a protein kinase activity.


Assuntos
Miosina Tipo III/química , Miosina Tipo III/fisiologia , Proteínas Quinases/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Cromatografia em Gel , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Cinética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...