Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Exp Appl Acarol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995469

RESUMO

This study explores sustainable agricultural practices by examining the role of organic materials in enhancing native predatory mites for controlling spider mites in apple orchards. Developing techniques to conserve indigenous natural enemies is vital for sustainable agricultural production. Phytoseiid mites can control spider mites, which are among the most significant pests in apple production. To conserve phytoseiid mite populations, it is important to identify alternative prey and to determine their role in phytoseiid mite proliferation. We demonstrated that the concurrent use of specific organic fertilizers and coconut husks can increase prey Tyrophagus mites, thereby enhancing phytoseiid mite density. Our research was conducted using sticky traps at the Miyagi Prefectural Agriculture and Horticulture Research Center in Japan. The occurrence of Tyrophagus mites was significantly correlated with the occurrence of phytoseiid mites in 2 years. In laboratory experiments, the use of organic fertilizers increased the density of Tyrophagus mites by 83 × within 4 weeks. Several species of phytoseiid mites were able to lay between 0.25 and 1.03 eggs per day per female by preying on Tyrophagus larvae. A 2-year field survey revealed that the use of organic fertilizers more than doubled the density of phytoseiid mites on apple leaves, likely through promoting Tyrophagus mite proliferation on the ground. These results highlight the potential of organic fertilizers not only to enhance soil nutrients, but also to boost phytoseiid mite populations, thereby contributing to more sustainable apple production.

2.
Biol Lett ; 16(4): 20200049, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264784

RESUMO

Extreme conditions are normal for animals living in harsh environments. These animals adapt to their habitats and can use difficult conditions by default. Organisms living in enclosed spaces, notably termites in decaying wood, experience low O2 and high CO2 gas conditions due to limited gas exchange and high insect density. Termite queens, in particular, reproduce in royal chambers deep inside the wood, wherein tens of thousands of individuals engage in social labour. Here, we demonstrate that royal chambers in termite nests have low O2 and high CO2 gas concentrations, which enhance egg production by queens. We identified a unique gas condition of royal chambers in the nest of the subterranean termite Reticulitermes speratus, which is characterized by low O2 (15.75%) and high CO2 (4.99%) concentrations. Queens showed significantly greater fecundity under the low O2 and high CO2 gas conditions in the royal chambers than under ambient gas conditions. Quantitative PCR analysis revealed that the royal chamber gas conditions significantly promoted the expression levels of the vitellogenin genes RsVg1, RsVg2 and RsVg3 in queens compared with ambient gas conditions. This study highlights the adaptation of animals that live in closed habitats, which are hypoxic and hypercapnic as the result of their own metabolism, so as to have a high fitness in such environmental conditions.


Assuntos
Isópteros , Animais , Dióxido de Carbono , Humanos , Insetos , Reprodução , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...