Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carcinogenesis ; 36(8): 883-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26014355

RESUMO

Acquired drug resistance poses a challenge in cancer therapy. Drug efflux is the most common mechanism of resistance displayed by hydrophobic drugs beyond a certain size. However, target specific changes and imbalance between the pro- and anti-apoptotic proteins are also found quite often in many tumours. A number of small antimitotic agents show high potential for multidrug resistant tumours, mainly because they are able to evade the efflux pumps. However, these compounds are also likely to suffer from resistance upon prolonged treatment. Thus, it is important to find out agents that are sensitive to resistant tumours and to know the resistance mechanisms against small molecules so that proper combinations can be planned. In this report, we have studied the efficiency of diaminothiazoles, a novel class of tubulin targeting potential anticancer compounds of small size, in multidrug resistant cancer. Studies in model cell lines raised against taxol and the lead diaminothiazole, DAT1 [4-amino-5-benzoyl-2-(4-methoxy phenyl amino) thiazole], and the xenograft tumours derived from them, show that diaminothiazoles are highly promising against multidrug resistant cancers. They were able to overcome the expression of efflux protein MDR1 and certain tubulin isotypes, could sensitize improper apoptotic machinery and ablated checkpoint proteins Bub1 and Mad2. Further, we have found that the resistance against microtubule binding compounds with higher size is broad-spectrum and emerges due to multiple factors including overexpression of transmembrane pumps. However, resistance against small molecules is transient, specific and is contributed by target specific changes and variations in apoptotic factors.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Tiazóis/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/química , Linhagem Celular Tumoral/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos SCID , Simulação de Acoplamento Molecular , Paclitaxel/farmacologia , Tiazóis/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Pharmacol Exp Ther ; 341(3): 718-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22414853

RESUMO

The prevention of neovessel formation or angiogenesis is a recent popular strategy for limiting and curing cancer. Diaminothiazoles are a class of compounds that have been reported to show promise in the treatment of cancer by inhibiting cancer cell proliferation and inducing apoptosis, because of their effects on microtubules and as inhibitors of cyclin-dependent kinases. Many microtubule-targeting agents are being studied for their antiangiogenic activity, and a few have shown promising activity in the treatment of cancer. Here, we report that diaminothiazoles can be highly effective as antiangiogenic agents, as observed in the chick membrane assay. The lead compound, 4-amino-5-benzoyl-2-(4-methoxyphenylamino)thiazole (DAT1), inhibits endothelial cell processes such as invasion, migration, and tubule formation, which require a functional cytoskeleton. DAT1 also decreases the expression of cell adhesion markers. The antiangiogenic activities of DAT1 occur at concentrations that are not cytotoxic to the normal endothelium. Analysis of intracellular signaling pathways shows that DAT1 inhibits Akt phosphorylation, which is actively involved in the angiogenic process. The antiangiogenic properties of diaminothiazoles, in addition to their promising antimitotic and cytotoxic properties in cancer cell lines, give them an extra advantage in the treatment of cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triazóis/farmacologia , Animais , Western Blotting , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Quinases Ciclina-Dependentes/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Microtúbulos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tiazóis , Fator A de Crescimento do Endotélio Vascular/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...