Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 13(4): 739-750, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872982

RESUMO

Appropriate blood pressure (BP) management through continuous monitoring and rapid diagnosis helps to take preventive care against cardiovascular diseases (CVD). As hypertension is one of the leading causes of CVDs, keeping hypertension under control by a timely screening of subjects becomes lifesaving. This work proposes estimating BP from motion artifact-affected photoplethysmography signals (PPG) by applying signal processing techniques in realtime. This paper proposes a deep neural network-based methodology to accurately classify PPG signals using a Fourier theory-based time-frequency (TF) spectrogram. This work uses the Fourier decomposition method (FDM) to transform a PPG signal into a TF spectrogram. In the proposed work, the last three layers of the pre-trained deep neural network, namely, GoogleNet, DenseNet, and AlexNet, are modified and then used to classify the PPG signal into normotension, pre-hypertension, and hypertension. The proposed framework is trained and tested using the MIMIC-III and PPG-BP databases using five-fold training and testing. Out of the three deep neural networks, the proposed framework with the DenseNet-201 network performs best, with a test accuracy of 96.5%. The proposed work uses FDM to compute the TF spectrogram to accurately separate the motion artifacts and noise components from a noise-corrupted PPG signal. Capturing more frequency components that contain more information from PPG signals makes the deep neural networks extract better and more meaningful features. Thus, training a deep neural network model with clean PPG signal features improves the generalized capability of a BP classification model when tested in realtime.

2.
Phys Eng Sci Med ; 46(4): 1589-1605, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747644

RESUMO

The markers that help to predict th function of a cardiovascular system are hemodynamic parameters like blood pressure (BP), stroke volume, heart rate, and cardiac output. Continuous analysis of hemodynamic parameters such as BP can detect abnormalities earlier, preventing cardiovascular diseases (CVDs). However, sometimes due to motion artifacts, it becomes difficult to monitor the BP accurately and classify it. This work presents an optimized deep learning model having the capability to estimate the systolic blood pressure (SBP) and diastolic blood pressure (DBP) and classify the BP stages simultaneously from the same network using only a single channel photoplethysmography (PPG) signal. The proposed model is designed by exploiting the deep learning framework of a convolutional neural network (CNN), exhibiting the inherent ability to extract features automatically. Moreover, the proposed framework utilizes the superlet transform method to transform a 1-D PPG signal into a 2-D super-resolution time-frequency (TF) spectrogram. A superlet transform separates the peaks related to true PPG signal components and motion artifacts components. Thus, the superlet provides a robust realtime approach to accurately estimating and classifying BP using a single PPG sensor signal and does not require additional ECG and PPG sensor signals for reference. Using a super-resolution spectrogram and CNN model makes the method profitable in motion artifact removal, feature selection, and extraction. Hence the proposed framework becomes less complex for deployment on wearable devices having limited battery resources. The performance of the proposed framework is demonstrated on the publicly available larger dataset MIMIC-III. This work obtained a mean absolute error (MAE) of 2.71 mmHg and 2.42 mmHg for SBP and DBP, respectively. The classification accuracy for the SBP prediction is about 96.79%, whereas it is 98.94% for DBP. From a motion artifact-affected PPG signal, SBP and DBP are estimated. Then the estimated BP is classified into three categories: normotension, prehypertension, and hypertension, and is compared with the state of art methods to show the effectiveness of the proposed optimized framework.


Assuntos
Aprendizado Profundo , Hipertensão , Humanos , Pressão Sanguínea/fisiologia , Determinação da Pressão Arterial/métodos , Fotopletismografia/métodos
3.
Comput Methods Programs Biomed ; 240: 107716, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542944

RESUMO

CONTEXT: Continuous blood pressure (BP) monitoring plays an important role while treating various cardiovascular diseases and hypertension. A high correlation between arterial blood pressure (ABP) and Photoplethysmogram (PPG) signal enables using a PPG signal to monitor and classify BP continuously. Control of BP in realtime is the basis for the prevention of hypertension. PROPOSED APPROACH: This work proposes a CS-NET architecture by unifying CNN and SVM approaches to classify BP using PPG signals. The main objective of the CS-NET method is to establish an accurate and reliable algorithm for the ABP classification. METHODOLOGY: ABP signals are labeled normal and abnormal using the hypertension criteria the American College of Cardiology (ACC)/American Heart Association (AHA) laid down. The proposed CS-NET model incorporates three critical steps in three successive stages. The first stage includes converting a preprocessed PPG signal into a time-frequency (TF) representation called a super-resolution spectrogram by superlet transform. The second stage uses a convolutional neural network (CNN) model with several hidden layers to extract morphological features from every PPG super-resolution spectrogram. The third stage uses a support vector machine (SVM) classifier to classify the PPG signal. RESULTS: PPG signals are used to train and test the proposed model. The performance of the proposed CS-NET method is tested using MIMIC-II, MIMIC-III, and PPG-BP-figshare database in terms of accuracy and F1 score. Moreover, the CS-NET method achieves better results with high accuracy when compared with other benchmark approaches that require an electrocardiogram signal for reference. CONCLUSIONS: The proposed model achieved an aggregate classification accuracy of 98.21% across a five-fold cross-validation technique, making it a reliable approach for BP classification in clinical settings and realtime monitoring.


Assuntos
Redes Neurais de Computação , Máquina de Vetores de Suporte , Pressão Sanguínea , Determinação da Pressão Arterial/métodos , Fotopletismografia/métodos , Humanos
4.
Comput Methods Programs Biomed ; 240: 107680, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459774

RESUMO

CONTEXT: Epilepsy, characterized by recurrent seizures, is a chronic brain disease that affects approximately 50 million. Recurrent seizures characterize it. A seizure, a burst of uncontrolled electrical activity between brain cells, results in temporary changes in behavior, level of consciousness, and involuntary movements. An accurate prediction of seizures can improve the standard of living in epileptic subjects. The increasing capabilities of machine learning and computer-assisted devices can detect seizures accurately with minimal human intervention. PROPOSED APPROACH: This paper proposes a method to detect seizure and non-seizure events using superlet transform (SLT) and a deep convolution neural network: VGG-19. The electroencephalogram (EEG) dataset from the University of Bonn is used to validate the efficacy of the proposed method. METHODOLOGY: SLT, a high-resolution time-frequency technique, converts EEG records into two-dimensional (2-D) images. SLT provides a high-resolution time-frequency representation reflecting the oscillation bursts in an EEG record. The time-frequency representations as 2-D images are fed to a pre-trained convolutional neural network: VGG-19. The last layers of VGG-19 are replaced with new layers to accommodate the different classification problems. RESULTS: The proposed method achieved an accuracy of 100% for all seven seizure and non-seizure detection cases considered in this work. In the case of three and five-class classification problems, the proposed method has better accuracy than other existing methods. The CHB-MIT scalp EEG database is also used to assess the effectiveness of the proposed method, which achieved a classification accuracy of 94.3% in distinguishing between seizure and non-seizure events. CONCLUSION: The results obtained using the proposed methodology show the efficacy of the proposed method in accurately detecting seizures and other brain activity with the least pre-processing and human involvement. The proposed method can assist medical practitioners by saving their effort and time.


Assuntos
Epilepsia , Processamento de Sinais Assistido por Computador , Humanos , Convulsões/diagnóstico , Redes Neurais de Computação , Epilepsia/diagnóstico , Aprendizado de Máquina , Eletroencefalografia/métodos
5.
Comput Methods Programs Biomed ; 229: 107294, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528998

RESUMO

BACKGROUND AND OBJECTIVE: Acquiring accurate and reliable health information using a PPG signal in wearable devices requires suppressing motion artifacts. This paper presents a method based on the Fractional Fourier transform (FrFT) to effectively suppress the motion artifacts in a Photoplethysmogram (PPG) signal for an accurate estimation of heart rate (HR). METHODS: By analyzing various PPG signals recorded under various physiological conditions and sampling frequencies, the proposed work determines an optimal value of the fractional order of the proposed FrFT. The proposed FrFT-based algorithm separates the motion artifacts component from the acquired PPG signal. Finally, the HR estimation accuracy during the strong motion artifact-affected windows is improved using a post-processing technique. The efficacy of the proposed method is evaluated by computing the root mean square error (RMSE). RESULTS: The performance of the proposed algorithm is compared with methods in recent studies using test and training datasets from the IEEE Signal Processing Cup (SPC). The proposed method provides the mean absolute error of 1.88 beats per minute (BPM) on all twenty-three recordings. CONCLUSIONS: The proposed method uses the Fourier method in the fractional domain. A noisy signal is rotated into an intermediate plane between the time and frequency domains to separate the signal from the noise. The algorithm incorporates FrFT analysis to suppress motion artifacts from PPG signals to estimate HR accurately. Further, a post-processing step is used to track the HR for accurate and reliable HR estimation. The proposed FrFT-based algorithm doesn't require additional reference accelerometers or hardware to estimate HR in real-time. The noise and signal separation is optimum for a fractional order (a) value in the vicinity of 0.6. The optimized value of fractional order is constant irrespective of the physical activity and sampling frequency.


Assuntos
Exercício Físico , Fotopletismografia , Análise de Fourier , Frequência Cardíaca/fisiologia , Fotopletismografia/métodos , Exercício Físico/fisiologia , Processamento de Sinais Assistido por Computador , Artefatos , Algoritmos
6.
Comput Biol Med ; 141: 105081, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952340

RESUMO

CONTEXT: Accurate and reliable heart rate (HR) estimation using photoplethysmographic (PPG)-enabled wearable devices in real-time during daily life activities is challenging. PROBLEM: A PPG signal recorded using a wearable PPG device is corrupted by motion artifacts. Therefore, the main challenge of monitoring HR in real time is the accurate reconstruction of a clean PPG signal by suppressing motion artifacts. PROPOSED APPROACH: The proposed algorithm employs the Fourier theory-based Fourier decomposition method (FDM) to suppress motion artifacts and a fast Fourier transform (FFT)-based method to estimate the HR. In this paper, a computationally efficient algorithm that does not require a reference accelerometer signal to suppress motion artifacts to estimate HR in real time during physical activities is proposed. METHODOLOGY: The noisy PPG signal is decomposed into a desired set of orthogonal Fourier intrinsic band functions (FIBFs). A clean PPG signal is obtained by discarding the FIBFs corrupted with noise and superpositioning the clean FIBFs. Clean FIBFs were further used to estimate the HR. RESULTS: The proposed method is evaluated by computing the mean absolute error (MAE) and percentage absolute error (PAE) on two publicly available datasets, IEEE SPC (training and test) and BAMI (BAMI-I and BAMI-II). The MAE and PAE values computed with the proposed method using the IEEE SPC dataset were (1.87, 1.71). The MAE and PAE values computed using the proposed method on the BAMI-I and BAMI-II datasets were (1.33, 1.13) and (1.45, 1.17), respectively. The computed MAE and PAE values were more accurate than those of state-of-the-art techniques presented in the literature. CONCLUSION: Owing to the improved accuracy and speed, the proposed HR estimation algorithm can be implemented in wearable health monitoring devices for continuous and reliable HR estimation in real time. The proposed algorithm can be applied to denoise PPG signals with different sampling rates.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Algoritmos , Artefatos , Exercício Físico , Análise de Fourier , Frequência Cardíaca/fisiologia , Fotopletismografia/métodos , Processamento de Sinais Assistido por Computador
7.
ISA Trans ; 114: 251-262, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33419569

RESUMO

Electrocardiogram (ECG) signals are used to diagnose cardiovascular diseases. During ECG signal acquisition, various noises like power line interference, baseline wandering, motion artifacts, and electromyogram noise corrupt the ECG signal. As an ECG signal is non-stationary, removing these noises from the recorded ECG signal is quite tricky. In this paper, along with the proposed denoising technique using stationary wavelet transform, various denoising techniques like lowpass filtering, highpass filtering, empirical mode decomposition, Fourier decomposition method, discrete wavelet transform are studied to denoise an ECG signal corrupted with noise. Signal-to-noise ratio, percentage root-mean-square difference, and root mean square error are used to compare the ECG signal denoising performance. The experimental result showed that the proposed stationary wavelet transform based ECG denoising technique outperformed the other ECG denoising techniques as more ECG signal components are preserved than other denoising algorithms.


Assuntos
Processamento de Sinais Assistido por Computador , Análise de Ondaletas , Algoritmos , Eletrocardiografia , Razão Sinal-Ruído
8.
Biomed Eng Lett ; 9(3): 407-411, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31456900

RESUMO

A joint time-frequency localized three-band biorthogonal wavelet filter bank to compress Electrocardiogram signals is proposed in this work. Further, the use of adaptive thresholding and modified run-length encoding resulted in maximum data volume reduction while guaranteeing reconstructing quality. Using signal-to-noise ratio, compression ratio (CR), maximum absolute error (EMA), quality score (Qs), root mean square error, compression time (CT) and percentage root mean square difference the validity of the proposed approach is studied. The experimental results deduced that the performance of the proposed approach is better when compared to the two-band wavelet filter bank. The proposed compression method enables loss-less data transmission of medical signals to remote locations for therapeutic usage.

9.
Biomed Eng Lett ; 9(1): 145-151, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30956887

RESUMO

An ECG signal, generally filled with noise, when de-noised, enables a physician to effectively determine and predict the condition and health of the heart. This paper aims to address the issue of denoising a noisy ECG signal using the Fast Fourier Transform based bandpass filter. Multi-stage adaptive peak detection is then applied to identify the R-peak in the QRS complex of the ECG signal. The result of test simulations using the MIT/BIH Arrhythmia database shows high sensitivity and positive predictivity (PP) of 99.98 and 99.96% respectively, confirming the accuracy and reliability of proposed algorithm for detecting R-peaks in the ECG signal.

10.
ISA Trans ; 80: 381-398, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30131166

RESUMO

The new age advancements in information technology due to materials and integrated circuit (IC) technologies and their applications in biomedical sciences have made the healthcare facilities more compact and affordable for the aging population. Market trends in healthcare and related devices indicate a sharp rise in their demand. Hence the researchers have converged the efforts on designing more smart and advanced medical devices using IC technology. Among these devices, cardiac pacemakers have become a recurrent biomedical device which is engrafted in the human body to detect and monitor a person's heart beating rate. The data thus generated is processed for various medical usages and devices via wireless methods. Cardiovascular diseases (CVDs) or diseases related to the heart are due to abnormalities or disorders of the heart and blood vessels. Till date, limited literature is available which focuses on a single technique that can perform all of the ECG signal denoising, ECG detection, lossless data compression and wireless transmission. In this work, a joint approach for denoising, detection, compression, and wireless transmission of ECG signal is proposed. The modified biorthogonal wavelet transform is used for denoising, detection and lossless compression of ECG signal. To reduce the circuit complexity, biorthogonal wavelet transform is realized using linear phase structure. Further, it is found in this work that the usage of modified biorthogonal wavelet transform increases the detection accuracy and CR of the proposed design. Also, in this work, the Wi-Fi-based wireless protocol is used for compressed data transmission. The proposed ECG detector achieves the highest sensitivity and positive predictivity of 99.95% and 99.92%, respectively, with the MIT-BIH arrhythmia database. The use of modified biorthogonal 3.1 wavelet transform and run-length encoding (RLE) for the compression of ECG data achieves a higher compression ratio (CR) of 6.271. To justify the effectiveness of the proposed algorithm, which uses modified biorthogonal wavelet 3.1transform, the results are compared with the existing methods, namely, Huffman coding/simple predictor, Huffman coding/adaptive, and slope predictor/fixed length packaging.

11.
ISA Trans ; 79: 239-250, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29801924

RESUMO

Heart rate monitoring and therapeutic devices include real-time sensing capabilities reflecting the state of the heart. Current circuitry can be interpreted as a cardiac electrical signal compression algorithm representing the time signal information into a single event description of the cardiac activity. It is observed that some detection techniques developed for ECG signal detection like artificial neural network, genetic algorithm, Hilbert transform, hidden Markov model are some sophisticated algorithms which provide suitable results but their implementation on a silicon chip is very complicated. Due to less complexity and high performance, wavelet transform based approaches are widely used. In this paper, after a thorough analysis of various wavelet transforms, it is found that Biorthogonal wavelet transform is best suited to detect ECG signal's QRS complex. The main steps involved in ECG detection process consist of de-noising and locating different ECG peaks using adaptive slope prediction thresholding. Furthermore, the significant challenges involved in the wireless transmission of ECG data are data conversion and power consumption. As medical regulatory boards demand a lossless compression technique, lossless compression technique with a high bit compression ratio is highly required. Furthermore, in this work, LZMA based ECG data compression technique is proposed. The proposed methodology achieves the highest signal to noise ratio, and lowest root mean square error. Also, the proposed ECG detection technique is capable of distinguishing accurately between healthy, myocardial infarction, congestive heart failure and coronary artery disease patients with a detection accuracy, sensitivity, specificity, and error of 99.92%, 99.94%, 99.92% and 0.0013, respectively. The use of LZMA data compression of ECG data achieves a high compression ratio of 18.84. The advantages and effectiveness of the proposed algorithm are verified by comparing with the existing methods.


Assuntos
Eletrocardiografia/instrumentação , Eletrocardiografia/métodos , Equipamentos e Provisões , Insuficiência Cardíaca/classificação , Frequência Cardíaca , Monitorização Fisiológica , Algoritmos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Simulação por Computador , Eletrocardiografia/estatística & dados numéricos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Modelos Estatísticos , Redes Neurais de Computação , Razão Sinal-Ruído , Análise de Ondaletas , Tecnologia sem Fio
12.
J Med Syst ; 42(6): 102, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29675598

RESUMO

Bradycardia can be modulated using the cardiac pacemaker, an implantable medical device which sets and balances the patient's cardiac health. The device has been widely used to detect and monitor the patient's heart rate. The data collected hence has the highest authenticity assurance and is convenient for further electric stimulation. In the pacemaker, ECG detector is one of the most important element. The device is available in its new digital form, which is more efficient and accurate in performance with the added advantage of economical power consumption platform. In this work, a joint algorithm based on biorthogonal wavelet transform and run-length encoding (RLE) is proposed for QRS complex detection of the ECG signal and compressing the detected ECG data. Biorthogonal wavelet transform of the input ECG signal is first calculated using a modified demand based filter bank architecture which consists of a series combination of three lowpass filters with a highpass filter. Lowpass and highpass filters are realized using a linear phase structure which reduces the hardware cost of the proposed design approximately by 50%. Then, the location of the R-peak is found by comparing the denoised ECG signal with the threshold value. The proposed R-peak detector achieves the highest sensitivity and positive predictivity of 99.75 and 99.98 respectively with the MIT-BIH arrhythmia database. Also, the proposed R-peak detector achieves a comparatively low data error rate (DER) of 0.002. The use of RLE for the compression of detected ECG data achieves a higher compression ratio (CR) of 17.1. To justify the effectiveness of the proposed algorithm, the results have been compared with the existing methods, like Huffman coding/simple predictor, Huffman coding/adaptive, and slope predictor/fixed length packaging.


Assuntos
Algoritmos , Compressão de Dados/métodos , Eletrocardiografia/métodos , Análise de Ondaletas , Desenho de Equipamento , Humanos , Marca-Passo Artificial , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
13.
J Med Syst ; 42(2): 34, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29322351

RESUMO

With the alarming rise in the deaths due to cardiovascular diseases (CVD), present medical research scenario places notable importance on techniques and methods to detect CVDs. As adduced by world health organization, technological proceeds in the field of cardiac function assessment have become the nucleus and heart of all leading research studies in CVDs in which electrocardiogram (ECG) analysis is the most functional and convenient tool used to test the range of heart-related irregularities. Most of the approaches present in the literature of ECG signal analysis consider noise removal, rhythm-based analysis, and heartbeat detection to improve the performance of a cardiac pacemaker. Advancements achieved in the field of ECG segments detection and beat classification have a limited evaluation and still require clinical approvals. In this paper, approaches on techniques to implement on-chip ECG detector for a cardiac pacemaker system are discussed. Moreover, different challenges regarding the ECG signal morphology analysis deriving from medical literature is extensively reviewed. It is found that robustness to noise, wavelet parameter choice, numerical efficiency, and detection performance are essential performance indicators required by a state-of-the-art ECG detector. Furthermore, many algorithms described in the existing literature are not verified using ECG data from the standard databases. Some ECG detection algorithms show very high detection performance with the total number of detected QRS complexes. However, the high detection performance of the algorithm is verified using only a few datasets. Finally, gaps in current advancements and testing are identified, and the primary challenge remains to be implementing bullseye test for morphology analysis evaluation.


Assuntos
Eletrocardiografia Ambulatorial/instrumentação , Marca-Passo Artificial , Tecnologia de Sensoriamento Remoto/instrumentação , Algoritmos , Humanos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...