Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34358111

RESUMO

A group of cytotoxic half-sandwich iridium(III) complexes with aminomethyl(diphenyl)phosphine derived from fluoroquinolone antibiotics exhibit the ability to (i) accumulate in the nucleus, (ii) induce apoptosis, (iii) activate caspase-3/7 activity, (iv) induce the changes in cell cycle leading to G2/M phase arrest, and (v) radicals generation. Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, circular dichroism, and molecular docking studies. DNA binding experiments established that the complexes interact with DNA by moderate intercalation and predominance of minor groove binding without the capability to cause a double-strand cleavage. The molecular docking study confirmed two binding modes: minor groove binding and threading intercalation with the fluoroquinolone part of the molecule involved in pi stacking interactions and the Ir(III)-containing region positioned within the major or minor groove. Fluorescence spectroscopic data (HSA and apo-Tf titration), together with molecular docking, provided evidence that Ir(III) complexes can bind to the proteins in order to be transferred. All the compounds considered herein were found to bind to the tryptophan residues of HSA within site I (subdomain II A). Furthermore, Ir(III) complexes were found to dock within the apo-Tf binding site, including nearby tyrosine residues.

2.
J Inorg Biochem ; 210: 111124, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32534287

RESUMO

Biological activity against reference and multi-drug resistant (MDR) clinical strains of fluoroquinolones (FQs): ciprofloxacin (HCp), norfloxacin (HNr), lomefloxacin (HLm) and sparfloxacin (HSf), phosphine ligands derived from those antibiotics and 14 phosphino copper(I) and copper(II) complexes with 2,9-dimethyl-1,10-phenanthroline, 1,10-phenanthroline or 2,2'-biquinoline have been determined. Almost all phosphines showed excellent antibacterial activity relative to reference strains (S. aureus ATCC 6538, E. coli ATCC 25922, K. pneumoniae ATCC 4352, and P. aeruginosa ATCC 27853). In rare cases P. aeruginosa rods showed natural insensitivity to oxides, and their copper(II) complexes. Most of the studied compounds showed weak antibacterial activity against clinical multi-drug resistant strains (MDR P. aeruginosa 16, 46, 325, 355, MRD A. baumanii 483 and MDR S. aureus 177). However, phosphines Ph2PCH2Sf (PSf), Ph2PCH2Lm (PLm) and their copper(I) complexes were characterized by the best antibacterial activity. In addition, PSf compounds, in which the activities relative to P. aeruginosa MDRs were relatively diverse, paid particular attention in our studies. Genetic and phenotypic studies of these strains showed significant differences between the strains, indicating different profiles of FQs resistance mechanisms. This may prove that a change in the spatial conformation of the PSf derivatives relative to the native form of HSf increased its affinity for the target site of action in gyrase, leading to selective inhibition of the multiplication of MDR strains. In conclusion, differences in PSf activity within closely related P. aeruginosa strains may indicate its diagnostic and therapeutic potential.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Fluoroquinolonas/farmacologia , Fosfinas/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Complexos de Coordenação/química , Cobre/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fluoroquinolonas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fosfinas/química , Relação Estrutura-Atividade
3.
Future Microbiol ; 15: 259-271, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32271108

RESUMO

Aim: Characterization of the ability of Fusobacterium nucleatum DSM 15643 and DSM 20482 strains in the presence of Cu2+ and H2O2 to reactive oxygen species generation. Method: Spectrophotometric ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) method was used. Results: Determination of: MIC for Cu2+, H2O2 and ABTS; survivability of F. nucleatum under atmospheric oxygen exposure; the level and rate constants of free radicals production by the bacteria. Conclusion:F. nucleatum in the presence of Cu2+ and H2O2 is able to generate free radicals. Reactive oxygen species are produced mainly outside the bacterial cell, which suggests that outer membrane proteins may be involved in oxidative process.


Assuntos
Fusobacterium nucleatum/química , Fusobacterium nucleatum/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria/métodos , Benzotiazóis/química , Cobre/farmacologia , Fusobacterium nucleatum/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Ácidos Sulfônicos/química
4.
Metallomics ; 11(12): 2066-2077, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31657425

RESUMO

The ability of the studied FomA protein fragments of Fusobacterium nucleatum (Fn) with copper(ii) ions (Cu(ii)-Ac-KGHGNGEEGTPTVHNE-NH2 (1Cu) and its cyclic analogue Cu(ii)-cyclo(KGHGNGEEGTPTVHNE) (2Cu)) to induce reactive oxygen species (ROS) generation, as a result of red-ox processes, was determined by UV-Vis, luminescence methods, spin trapping and cyclic voltamperometry. The contribution of 1O2 and ˙OH to DNA degradation was proved using gel electrophoresis. Furthermore, the pronounced generation of ROS by mouse colon carcinoma cells (CT26) stimulated by both copper(ii) complexes was confirmed. A fluorescence method allowed the total amounts of ROS generated inside the CT26 cells to be detected, while the spin trapping technique proved that free radicals mainly attached to the membrane surface. These last results are in agreement with the data obtained from the ICP-MS method, which demonstrates that 1Cu and 2Cu complexes are not efficiently accumulated inside the cell. Furthermore, the role of ROS in lipid peroxidation was established. The above-mentioned factors may clearly indicate the contribution of ROS generated by the studied copper(ii) complexes to colonic cell damage, which can lead to a carcinogenesis process. This study may be an important step to recognize and understand the mechanism of colon cancer initiation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Cobre/metabolismo , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Sequência de Aminoácidos , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cobre/química , Dano ao DNA , Radicais Livres/química , Radicais Livres/metabolismo , Fusobacterium nucleatum/metabolismo , Humanos , Camundongos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...