Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(13): 5679-5694, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38902891

RESUMO

Optimizing exchange-correlation functionals for both core/valence ionization potentials (cIPs/vIPs) and valence excitation energies (VEEs) at the same time in the framework of MRSF-TDDFT is self-contradictory. To overcome the challenge, within the previous "adaptive exact exchange" or double-tuning strategy on Coulomb-attenuating XC functionals (CAM), a new XC functional specifically for cIPs and vIPs was first developed by enhancing exact exchange to both short- and long-range regions. The resulting DTCAM-XI functional achieved remarkably high accuracy in its predictions with errors of less than half eV. An additional concept of "valence attenuation", where the amount of exact exchange for the frontier orbital regions is selectively suppressed, was introduced to consistently predict both VEEs and IPs at the same time. The second functional, DTCAM-XIV, exhibits consistent overall prediction accuracy at ∼0.64 eV. By preferentially optimizing VEEs within the same "valence attenuation" concept, a third functional, DTCAM-VAEE, was obtained, which exhibits improved performance as compared to that of the previous DTCAM-VEE and DTCAM-AEE in the prediction of VEEs, making it an attractive alternative to BH&HLYP. As the combination of "adaptive exchange" and "valence attenuation" is operative, it would be exciting to explore its potential with a more tunable framework in the future.

2.
J Chem Theory Comput ; 19(21): 7671-7684, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37844129

RESUMO

It is demonstrated that significant accuracy improvements in MRSF-TDDFT can be achieved by introducing two different exchange-correlation (XC) functionals for the reference Kohn-Sham DFT and the response part of the calculations, respectively. Accordingly, two new XC functionals of doubly tuned Coulomb attenuated method-vertical excitation energy (DTCAM-VEE) and DTCAM-AEE were developed on the basis of the "adaptive exact exchange (AEE)" concept in the framework of the Coulomb-attenuating XC functionals. The values by DTCAM-VEE are in excellent agreement with those of Thiel's set [mean absolute errors (MAEs) and the interquartile range (IQR) values of 0.218 and 0.327 eV, respectively]. On the other hand, DTCAM-AEE faithfully reproduced the qualitative aspects of conical intersections (CIs) of trans-butadiene and thymine and the nonadiabatic molecular dynamics (NAMD) simulations on thymine. The latter functional also remarkably exhibited the exact 1/R asymptotic behavior of the charge-transfer state of an ethylene-tetrafluoroethylene dimer and the accurate potential energy surfaces (PESs) along the two torsional angles of retinal protonated Schiff base model with six double bonds (rPSB6). Overall, DTCAM-AEE generally performs well, as its MAE (0.237) and IQR (0.41 eV) are much improved as compared to BH&HLYP. The current idea can also be applied to other XC functionals as well as other variants of linear response theories, opening a new way of developing XC functionals.

3.
J Phys Chem Lett ; 14(39): 8896-8908, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37767969

RESUMO

The density functional theory (DFT) and linear response (LR) time-dependent (TD)-DFT are of the utmost importance for routine computations. However, the single reference formulation of DFT suffers in the description of open-shell singlet systems such as diradicals and bond-breaking. LR-TDDFT, on the other hand, finds difficulties in the modeling of conical intersections, doubly excited states, and core-level excitations. In this Perspective, we demonstrate that many of these limitations can be overcome by recently developed mixed-reference (MR) spin-flip (SF)-TDDFT, providing an alternative yet accurate route for such challenging situations. Empowered by the practicality of the LR formalism, it is anticipated that MRSF-TDDFT can become one of the major workhorses for general routine tasks.

4.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37184015

RESUMO

Multiple ERI (Electron Repulsion Integral) tensor contractions (METC) with several matrices are ubiquitous in quantum chemistry. In response theories, the contraction operation, rather than ERI computations, can be the major bottleneck, as its computational demands are proportional to the multiplicatively combined contributions of the number of excited states and the kernel pre-factors. This paper presents several high-performance strategies for METC. Optimal approaches involve either the data layout reformations of interim density and Fock matrices, the introduction of intermediate ERI quartet buffer, and loop-reordering optimization for a higher cache hit rate. The combined strategies remarkably improve the performance of the MRSF (mixed reference spin flip)-TDDFT (time-dependent density functional theory) by nearly 300%. The results of this study are not limited to the MRSF-TDDFT method and can be applied to other METC scenarios.

5.
J Chem Theory Comput ; 19(3): 953-964, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36655271

RESUMO

Relativistic mixed-reference spin-flip (MRSF)-TDDFT is developed considering the spin-orbit coupling (SOC) within the mean-field approximation. The resulting SOC-MRSF faithfully reproduces the experiments with very high accuracy, which is also consistent with the values by four-component (4c) relativistic CASSCF and 4c-CASPT2 in the spin-orbit-energy splitting calculations of the C, Si, and Ge atoms. Even for the fifth-row element Sn, the SOC-MRSF yielded accurate splittings (∼ 3 % error). In the SOC calculations of the molecular 4-thiothymine with a third-row element, SOC-MRSF values are in excellent agreement with those of the SO-GMC-QDPT2 level, regardless of geometries and exchange-correlation functionals. The same SOC-MRSF predicted the anticipated chance of S1 (nπ*) → T1 (ππ*) intersystem crossing, even in thymine with only second-row elements. With its accuracy and practicality, thus, SOC-MRSF is a promising electronic structure protocol in challenging situations such as nonadiabatic molecular dynamics (NAMD) incorporating both internal conversions and intersystem crossings in large systems.

6.
Opt Lett ; 47(5): 1029-1032, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230282

RESUMO

Using numerical simulation, we have investigated the generation of color solitons consisting of two radiation fragments with different carrier frequencies in a dual-wavelength laser. The proposed mechanism for the formation of such solitons involves nonlinear losses that increase with increasing intensity, the dispersion of the refractive index, spectral gain inhomogeneity, and the generation of a doublet radiation spectrum, owing to the corresponding spectral-dependent losses in the laser. The proposed theory explains the main features of the experimentally observed formation of color domains in fiber lasers and has the potential for further development of methods for controlling the nonlinear dynamics of laser radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...