Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(4): 3274-3284, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197167

RESUMO

Vacuum ultraviolet (VUV) photodissociation of N2 molecules is a source of reactive N atoms in the interstellar medium. In the energy range of VUV optical excitation of N2, the N-N triple bond cleavage leads to three types of atoms: ground-state N(4S) and excited-state N(2P) and N(2D). The latter is the highest reactive and it is believed to be the primary participant in reactions with hydrocarbons in Titan's atmosphere. Experimental studies have observed a non-monotonic energy dependence and non-statistical character of the photodissociation of N2. This implies different dissociation pathways and final atomic products for different wavelength regions in the sunlight spectrum. We here apply ab initio quantum chemical and nonadiabatic quantum dynamical techniques to follow the path of an electronic state from the excitation of a particular singlet 1Σ+u and 1Πu vibronic level of N2 to its dissociation into different atomic products. We simulate dynamics for two isotopomers of the nitrogen molecule, 14N2 and 14N15N for which experimental data on the branching are available. Our computations capture the non-monotonic energy dependence of the photodissociation branching ratios in the energy range 108 000-116 000 cm-1. Tracing the quantum dynamics in a bunch of electronic states enables us to identify the key components that determine the efficacy of singlet to triplet population transfer and therefore predissociation lifetimes and branching ratios for different energy regions.

2.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37102444

RESUMO

Multi-state electronic dynamics at higher excitation energies is needed for the understanding of a variety of energy rich situations, including chemistry under extreme conditions, vacuum ultraviolet (VUV) induced astrochemistry, and attochemistry. It calls for an understanding of three stages, energy acquisition, dynamical propagation, and disposal. It is typically not possible to identify a basis of uncoupled quantum states that is sufficient for the three stages. The handicap is the large number of coupled quantum states that is needed to describe the system. Progress in quantum chemistry provides the necessary background to the energetics and the coupling. Progress in quantum dynamics takes this as input for the propagation in time. Right now, it seems that we have come of age with potential detailed applications. We here report a demonstration to a coupled electron-nuclear quantum dynamics through a maze of 47 electronic states and with attention to the order in perturbation theory that is indicated using propensity rules for couplings. Close agreement with experimental results for the VUV photodissociation of 14N2 and its isotopomer 14N15N is achieved. We pay special attention to the coupling between two dissociative continua and an optically accessible bound domain. The computations reproduce and interpret the non-monotonic branching between the two exit channels producing N(2D) and N(2P) atoms as a function of excitation energy and its variation with the mass.

3.
J Chem Theory Comput ; 19(3): 746-757, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36657738

RESUMO

Unraveling the density matrix of a non-stationary quantum state as an explicit function of a few observables provides a complementary view of quantum dynamics. We have recently developed a practical way to identify the minimal set of the dominant observables that govern the quantal dynamics even in the case of strong non-adiabatic effects and large anharmonicity [Komarova et al., J. Chem. Phys. 155, 204110 (2021)]. Fast convergence in the number of the dominant contributions is achieved when instead of the density matrix we describe the time-evolution of the surprisal, the logarithm of the density operator. In the present work, we illustrate the efficiency of the proposed approach using an example of the early time dynamics in pyrazine in a Hilbert space accounting for up to four vibrational normal modes, {Q10a, Q6a, Q1, and Q9a}, and two coupled electronic states, the optically dark B13u(nπ*) and the bright B12u(ππ*) states. Dynamics in four-dimensional (4D) configurational space involve 19,600 vibronic eigenstates. Our results reveal that the rate of the ultrafast population decay as well as the shape of the nuclear wave packets in 2D, accounting only for {Q10a,Q6a} normal modes, are accurately captured with only six dominant time-independent observables in the surprisal. Extension of the dynamics to 3D and 4D vibrational subspace requires only five additional constraints. The time-evolution of a quantum state in 4D vibrational space on two electronic states is thus compacted to only 11 time-dependent coefficients of these observables.

4.
J Phys Chem A ; 125(43): 9495-9507, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34677060

RESUMO

We report on fully quantum electronic-nuclear dynamics following sudden ionization from the neutral in the three lowest electronic states of the CH4+ and CD4+ cations. There is a strong Jahn-Teller effect in the Franck-Condon region, and we employ two nuclear degrees of freedom that span the internal coordinates involved in the Jahn-Teller coupling. The initial state results from tunneling ionization by a strong IR field which coherently pumps the three lowest states of the cation, D0, D1, and D2. The quantum dynamical simulations show that a strong isotope effect occurs when the ionization significantly accesses the D2 state of the cation in the Franck-Condon region. The computed isotope effect is larger than expected on the basis of the effective mass ratio. The strong effect is due to fast oscillations of the electronic coherences between the D2 and the D1 and D0 electronic states and their modulation by the nonadiabatic couplings before a significant onset of nuclear motion. The magnitude of the effect is similar to the one that we previously reported for a sudden photoionization process. A strong isotope effect has been observed in high harmonic spectroscopy studies of the very short time dynamics Jahn-Teller structural rearrangement of the methane cation upon sudden ionization.

5.
J Phys Chem Lett ; 11(17): 6990-6995, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787197

RESUMO

Our quantum device is a solid-state array of semiconducting quantum dots that is addressed and read by 2D electronic spectroscopy. The experimental ultrafast dynamics of the device is well simulated by solving the time-dependent Schrödinger equation for a Hamiltonian that describes the lower electronically excited states of the dots and three laser pulses. The time evolution induced in the electronic states of the quantum device is used to emulate the quite different nonequilibrium vibrational dynamics of a linear triatomic molecule. We simulate the energy transfer between the two local oscillators and, in a more elaborate application, the expectation values of the quantum mechanical creation and annihilation operators of each local oscillator. The simulation uses the electronic coherences engineered in the device upon interaction with a specific sequence of ultrafast pulses. The algorithm uses the algebraic description of the dynamics of the physical problem and of the hardware.

10.
J Chem Phys ; 151(11): 114308, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542039

RESUMO

The time evolution of a vacuum ultraviolet excited N2 molecule is followed all the way from an ultrafast excitation to dissociation by a quantum mechanical simulation. The primary aim is to discern the role of the excitation by a pulse short compared to the vibrational period, to discern the different coupling mechanisms between different electronic states, nonadiabatic, spin orbit, and to analyze the origin of any isotopic effect. We compare the picture in the time and energy domains. The initial ultrafast excitation pumps the molecule to a coherent electronic wave packet to which several singlet bound electronic states contribute. The total nonstationary wave function is given as a coherent sum of nuclear wave packets on each electronic state times the stationary electronic wave function. When the wave packets on different electronic states overlap, they are coupled in a mass-dependent manner whether one uses an adiabatic or a diabatic electronic basis. A weak spin-orbit coupling acts as a bottleneck between the bound singlet part of phase space and the triplet manifold of states in which dissociation takes place. To describe the spin-orbit perturbation that is ongoing in time, an energy-resolved eigenstate representation appears to be more intuitive. In the eigenstate basis, the singlet-to-triplet population transfer is large only between those vibronic eigenstates that are quasiresonant in energy. The states in resonance are different for different excitation energy ranges. The resonances are mass dependent, which explains the control of the isotope effect through the profile of the pulse.

11.
Proc Natl Acad Sci U S A ; 115(23): 5890-5895, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784776

RESUMO

Isotopic fractionation in the photodissociation of N2 could explain the considerable variation in the 14N/15N ratio in different regions of our galaxy. We previously proposed that such an isotope effect is due to coupling of photoexcited bound valence and Rydberg electronic states in the frequency range where there is strong state mixing. We here identify features of the role of the mass in the dynamics through a time-dependent quantum-mechanical simulation. The photoexcitation of N2 is by an ultrashort pulse so that the process has a sharply defined origin in time and so that we can monitor the isolated molecule dynamics in time. An ultrafast pulse is necessarily broad in frequency and spans several excited electronic states. Each excited molecule is therefore not in a given electronic state but in a superposition state. A short time after excitation, there is a fairly sharp onset of a mass-dependent large population transfer when wave packets on two different electronic states in the same molecule overlap. This coherent overlap of the wave packets on different electronic states in the region of strong coupling allows an effective transfer of population that is very mass dependent. The extent of the transfer depends on the product of the populations on the two different electronic states and on their relative phase. It is as if two molecules collide but the process occurs within one molecule, a molecule that is simultaneously in both states. An analytical toy model recovers the (strong) mass and energy dependence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...