Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1018551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36711018

RESUMO

The pharmacology of acid-sensitive ion channels (ASICs) is diverse, but potent and selective modulators, for instance for ASIC2a, are still lacking. In the present work we studied the effect of five 2-aminobenzimidazole derivatives on native ASICs in rat brain neurons and recombinant receptors expressed in CHO cells using the whole-cell patch clamp method. 2-aminobenzimidazole selectively potentiated ASIC3. Compound Ru-1355 strongly enhanced responses of ASIC2a and caused moderate potentiation of native ASICs and heteromeric ASIC1a/ASIC2a. The most active compound, Ru-1199, caused the strongest potentiation of ASIC2a, but also potentiated native ASICs, ASIC1a and ASIC3. The potentiating effects depended on the pH and was most pronounced with intermediate acidifications. In the presence of high concentrations of Ru-1355 and Ru-1199, the ASIC2a responses were biphasic, the initial transient currents were followed by slow component. These slow additional currents were weakly sensitive to the acid-sensitive ion channels pore blocker diminazene. We also found that sustained currents mediated by ASIC2a and ASIC3 are less sensitive to diminazene than the peak currents. Different sensitivities of peak and sustained components to the pore-blocking drug suggest that they are mediated by different open states. We propose that the main mechanism of action of 2-aminobenzimidazole derivatives is potentiation of the open state with slow kinetics of activation and desensitization.

2.
Cell Mol Neurobiol ; 43(2): 771-783, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35201495

RESUMO

Among the proton-activated channels of the ASIC family, ASIC1a exhibits a specific tachyphylaxis phenomenon in the form of a progressive decrease in the response amplitude during a series of activations. This process is well known, but its mechanism is poorly understood. Here, we demonstrated a partial reversibility of this effect using long-term whole-cell recording of CHO cells transfected with rASIC1a cDNA. Thus, tachyphylaxis represents a slow desensitization of ASIC1a. Prolonged acidifications provided the same recovery from slow desensitization as short acidifications of the same frequency. Slow desensitization and steady-state desensitization are independent processes although the latter attenuates the development of the former. We found that drugs which facilitate ASIC1a activation (e.g., amitriptyline) cause an enhancement of slow desensitization, while inhibition of ASIC1a by 9-aminoacridine attenuates this process. Overall, for a broad variety of exposures, including increased calcium concentration, different pH conditions, and modulating drugs, we found a correlation between their effects on ASIC1a response amplitude and the development of slow desensitization. Thus, our results demonstrate that slow desensitization occurs only when ASIC1a is in the open state.


Assuntos
Canais Iônicos Sensíveis a Ácido , Taquifilaxia , Animais , Cricetinae , Cricetulus , Células CHO , Amitriptilina , Concentração de Íons de Hidrogênio
3.
ACS Chem Neurosci ; 10(3): 1636-1648, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30475579

RESUMO

The chemical structures of some antidepressants are similar to those of recently described amine-containing ligands of acid-sensing ion channels (ASICs). ASICs are expressed in brain neurons and participate in numerous CNS functions. As such, they can be related to antidepressant action or side effects. We therefore studied the actions of a series of antidepressants on recombinant ASIC1a and ASIC2a and on native ASICs in rat brain neurons. Most of the tested compounds prevented steady-state ASIC1a desensitization evoked by conditioning acidification to pH 7.1. Amitriptyline also potentiated ASIC1a responses evoked by pH drops from 7.4 to 6.5. We conclude that amitriptyline has a twofold effect: it shifts activation to less acidic values while also shifting steady-state desensitization to more acidic values. Chlorpromazine, desipramine, amitriptyline, fluoxetine, and atomoxetine potentiated ASIC2a response. Tianeptine caused strong inhibition of ASIC2a. Both potentiation and inhibition of ASIC2a were accompanied by the slowdown of desensitization, suggesting distinct mechanisms of action on activation and desensitization. In experiments on native heteromeric ASICs, tianeptine and amitriptyline demonstrated the same modes of action as on ASIC2a although with reduced potency.


Assuntos
Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Antidepressivos/farmacologia , Neurônios/efeitos dos fármacos , Prótons , Aminas/farmacologia , Animais , Cricetulus/metabolismo , Concentração de Íons de Hidrogênio , Técnicas de Patch-Clamp/métodos , Ratos
4.
Channels (Austin) ; 11(6): 648-659, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29130788

RESUMO

Proton-gated channels of the ASIC family are widely distributed in the mammalian brain, and, according to the recent data, participate in synaptic transmission. However, ASIC-mediated currents are small, and special efforts are required to detect them. This prompts the search for endogenous ASIC ligands, which can activate or potentiate these channels. A recent finding of the potentiating action of histamine on recombinant homomeric ASIC1a has directed attention to amine-containing compounds. In the present study, we have analyzed the action of histamine, tyramine, and tryptamine on native and recombinant ASICs. None of the compounds caused potentiation of native ASICs in hippocampal interneurons. Furthermore, when applied simultaneously with channel activation, they produced voltage-dependent inhibition. Experiments on recombinant ASIC1a and ASIC2a allowed for an interpretation of these findings. Histamine and tyramine were found to be inactive on the ASIC2a, while tryptamine demonstrated weak inhibition. However, they induce both voltage-dependent inhibition of open channels and voltage-independent potentiation of closed/desensitized channels on the ASIC1a. We suggest that the presence of an ASIC2a subunit in heteromeric native ASICs prevents potentiation but not inhibition. As a result, the inhibitory action of histamine, which is masked by a strong potentiating effect on the ASIC1a homomers, becomes pronounced in experiments with native ASICs.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Histamina/metabolismo , Triptaminas/metabolismo , Tiramina/metabolismo , Animais , Células CHO , Cricetulus , Masculino , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo
5.
PLoS One ; 12(5): e0177077, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28475608

RESUMO

TRPV1 (vanilloid) receptors are activated by different types of stimuli including capsaicin, acidification and heat. Various ligands demonstrate stimulus-dependent action on TRPV1. In the present work we studied the action of polypeptides isolated from sea anemone Heteractis crispa (APHC1, APHC2 and APHC3) on rat TRPV1 receptors stably expressed in CHO cells using electrophysiological recordings, fluorescent Ca2+ measurements and molecular modeling. The APHCs potentiated TRPV1 responses to low (3-300 nM) concentrations of capsaicin but inhibited responses to high (>3.0 µM) concentrations. The activity-dependent action was also found for TRPV1 responses to 2APB and acidification. Thus the action mode of APHCs is bimodal and depended on the activation stimuli strength-potentiation of low-amplitude responses and no effect/inhibition of high-amplitude responses. The double-gate model of TRPV1 activation suggests that APHC-polypeptides may stabilize an intermediate state during the receptor activation. Molecular modeling revealed putative binding site at the outer loops of TRPV1. Binding to this site can directly affect activation by protons and can be allosterically coupled with capsaicin site. The results are important for further investigations of both TRPV1 and its ligands for potential therapeutic use.


Assuntos
Capsaicina/farmacologia , Canais de Cátion TRPV/metabolismo , Animais , Células CHO , Venenos de Cnidários/farmacologia , Cricetulus , Ligantes , Modelos Moleculares , Peptídeos/farmacologia , Ratos
6.
Eur J Neurosci ; 41(7): 869-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25557871

RESUMO

Antidepressants have many targets in the central nervous system. A growing body of data demonstrates the influence of antidepressants on glutamatergic neurotransmission. In the present work, we studied the inhibition of native Ca(2+)-permeable and Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rat brain neurons by fluoxetine. The Ca(2+)-impermeable AMPA receptors in CA1 hippocampal pyramidal neurons were weakly affected. The IC50 value for the inhibition of Ca(2+)-permeable AMPA receptors in giant striatal interneurons was 43 ± 7 µM. The inhibition of Ca(2+)-permeable AMPA receptors was voltage dependent, suggesting deep binding in the pore. However, the use dependence of fluoxetine action differed markedly from that of classical AMPA receptor open-channel blockers. Moreover, fluoxetine did not compete with other channel blockers. In contrast to fluoxetine, its membrane-impermeant quaternary analog demonstrated all of the features of channel inhibition typical for open-channel blockers. It is suggested that fluoxetine reaches the binding site through a hydrophobic access pathway. Such a mechanism of block is described for ligands of sodium and calcium channels, but was never found in AMPA receptors. Molecular modeling suggests binding of fluoxetine in the subunit interface; analogous binding was proposed for local anesthetics in closed sodium channels and for benzothiazepines in calcium channels.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Cálcio/metabolismo , Fluoxetina/farmacologia , Interneurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Receptores de AMPA/metabolismo , Animais , Sítios de Ligação , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Células Cultivadas , Simulação por Computador , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Diaminas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Interneurônios/fisiologia , Modelos Moleculares , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Compostos de Amônio Quaternário/farmacologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...