Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Immunity ; 57(1): 52-67.e10, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38091995

RESUMO

The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.


Assuntos
Movimento Celular , Pulmão , Mecanotransdução Celular , Neutrófilos , Animais , Camundongos , Membrana Celular , Canais Iônicos/genética , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Atividade Bactericida do Sangue/genética , Mecanotransdução Celular/genética
3.
Cell Rep Med ; 4(10): 101223, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37794584

RESUMO

Wet age-related macular degeneration (AMD), characterized by leaky neovessels emanating from the choroid, is a main cause of blindness. As current treatments for wet AMD require regular intravitreal injections of anti-vascular endothelial growth factor (VEGF) biologics, there is a need for the development of less invasive treatments. Here, we designed an allosteric inhibitor of end binding-3 (EB3) protein, termed EBIN, which reduces the effects of environmental stresses on endothelial cells by limiting pathological calcium signaling. Delivery of EBIN via eye drops in mouse and non-human primate (NHP) models of wet AMD prevents both neovascular leakage and choroidal neovascularization. EBIN reverses the epigenetic changes induced by environmental stresses, allowing an activation of a regenerative program within metabolic-active endothelial cells comprising choroidal neovascularization (CNV) lesions. These results suggest the therapeutic potential of EBIN in preventing the degenerative processes underlying wet AMD.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Camundongos , Animais , Células Endoteliais/metabolismo , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/metabolismo
4.
Am J Respir Cell Mol Biol ; 69(4): 391-403, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37290041

RESUMO

Acute respiratory distress syndrome (ARDS) is a lung disease characterized by acute onset of noncardiogenic pulmonary edema, hypoxemia, and respiratory insufficiency. The current treatment for ARDS is mainly supportive in nature, providing a critical need for targeted pharmacological management. We addressed this medical problem by developing a pharmacological treatment for pulmonary vascular leakage, a culprit of alveolar damage and lung inflammation. Our novel therapeutic target is the microtubule accessory factor EB3 (end binding protein 3), which contributes to pulmonary vascular leakage by amplifying pathological calcium signaling in endothelial cells in response to inflammatory stimuli. EB3 interacts with IP3R3 (inositol 1,4,5-trisphosphate receptor 3) and orchestrates calcium release from endoplasmic reticulum stores. Here, we designed and tested the therapeutic benefits of a 14-aa peptide named CIPRI (cognate IP3 receptor inhibitor), which disrupted EB3-IP3R3 interaction in vitro and in lungs of mice challenged with endotoxin. Treatment with CIPRI or depletion of IP3R3 in lung microvascular endothelial monolayers mitigated calcium release from endoplasmic reticulum stores and prevented a disassembly of vascular endothelial cadherin junctions in response to the proinflammatory mediator α-thrombin. Furthermore, intravenous administration of CIPRI in mice mitigated inflammation-induced lung injury, blocked pulmonary microvascular leakage, prevented activation of NFAT (nuclear factor of activated T cells) signaling, and reduced production of proinflammatory cytokines in the lung tissue. CIPRI also improved survival of mice from endotoxemia and polymicrobial sepsis. Together, these data demonstrate that targeting EB3-IP3R3 interaction with a cognate peptide is a promising strategy to address hyperpermeability of microvessels in inflammatory lung diseases.


Assuntos
Edema Pulmonar , Síndrome do Desconforto Respiratório , Camundongos , Animais , Células Endoteliais/metabolismo , Cálcio/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Pulmão/patologia , Edema Pulmonar/patologia , Proteínas de Transporte/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
5.
iScience ; 26(5): 106661, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168565

RESUMO

Endothelial cells (ECs) continuously sense and adapt to changes in shear stress generated by blood flow. Here, we show that the activation of the mechanosensitive channel Piezo1 by defined shear forces induces Ca2+ entry into the endoplasmic reticulum (ER) via the ER Ca2+ ATPase pump. This entry is followed by inositol trisphosphate receptor 2 (IP3R2)-elicited ER Ca2+ release into the cytosol. The mechanism of ER Ca2+ release involves the generation of cAMP by soluble adenylyl cyclase (sAC), leading to IP3R2-evoked Ca2+ gating. Depleting sAC or IP3R2 prevents ER Ca2+ release and blocks EC alignment in the direction of flow. Overexpression of constitutively active Akt1 restores the shear-induced alignment of ECs lacking Piezo1 or IP3R2, as well as the flow-induced vasodilation in endothelial restricted Piezo1 knockout mice. These studies describe an unknown Piezo1-cAMP-IP3R2 circuit as an essential mechanism activating Akt signaling and inducing adaptive changes in ECs to laminar flow.

6.
J Cell Biol ; 220(12)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652421

RESUMO

Cell surface G protein-coupled receptors (GPCRs), upon agonist binding, undergo serine-threonine phosphorylation, leading to either receptor recycling or degradation. Here, we show a new fate of GPCRs, exemplified by ER retention of sphingosine-1-phosphate receptor 1 (S1PR1). We show that S1P phosphorylates S1PR1 on tyrosine residue Y143, which is associated with recruitment of activated BiP from the ER into the cytosol. BiP then interacts with endocytosed Y143-S1PR1 and delivers it into the ER. In contrast to WT-S1PR1, which is recycled and stabilizes the endothelial barrier, phosphomimicking S1PR1 (Y143D-S1PR1) is retained by BiP in the ER and increases cytosolic Ca2+ and disrupts barrier function. Intriguingly, a proinflammatory, but non-GPCR agonist, TNF-α, also triggered barrier-disruptive signaling by promoting S1PR1 phosphorylation on Y143 and its import into ER via BiP. BiP depletion restored Y143D-S1PR1 expression on the endothelial cell surface and rescued canonical receptor functions. Findings identify Y143-phosphorylated S1PR1 as a potential target for prevention of endothelial barrier breakdown under inflammatory conditions.


Assuntos
Retículo Endoplasmático/genética , Inflamação/genética , Receptores de Esfingosina-1-Fosfato/genética , Fator de Necrose Tumoral alfa/genética , Citosol/metabolismo , Endocitose/genética , Chaperona BiP do Retículo Endoplasmático/química , Chaperona BiP do Retículo Endoplasmático/genética , Células Endoteliais/metabolismo , Humanos , Inflamação/patologia , Fosforilação/genética , Proteólise , Receptores Acoplados a Proteínas G/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Tirosina/genética
7.
Sci Signal ; 14(679)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879602

RESUMO

Chloride intracellular channels 1 (CLIC1) and 4 (CLIC4) are expressed in endothelial cells and regulate angiogenic behaviors in vitro, and the expression of Clic4 is important for vascular development and function in mice. Here, we found that CLIC1 and CLIC4 in endothelial cells regulate critical G protein-coupled receptor (GPCR) pathways associated with vascular development and disease. In cultured endothelial cells, we found that CLIC1 and CLIC4 transiently translocated to the plasma membrane in response to sphingosine 1-phosphate (S1P). Both CLIC1 and CLIC4 were essential for mediating S1P-induced activation of the small guanosine triphosphatase (GTPase) Rac1 downstream of S1P receptor 1 (S1PR1). In contrast, only CLIC1 was essential for S1P-induced activation of the small GTPase RhoA downstream of S1PR2 and S1PR3. Neither were required for other S1P-S1PR signaling outputs. Rescue experiments revealed that CLIC1 and CLIC4 were not functionally interchangeable, suggesting distinct and specific functions for CLICs in transducing GPCR signaling. These CLIC-mediated mechanisms were critical for S1P-induced stimulation of the barrier function in endothelial cell monolayers. Our results define CLICs as previously unknown players in the pathways linking GPCRs to small GTPases and vascular endothelial function.


Assuntos
Canais de Cloreto/metabolismo , Proteínas Mitocondriais/metabolismo , Neuropeptídeos , Receptores de Esfingosina-1-Fosfato , Proteínas rac1 de Ligação ao GTP , Proteína rhoA de Ligação ao GTP , Animais , Linhagem Celular , Células Cultivadas , Células Endoteliais , Lisofosfolipídeos , Camundongos , Neuropeptídeos/metabolismo , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Esfingosina , Receptores de Esfingosina-1-Fosfato/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
8.
FASEB J ; 34(9): 12805-12819, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32772419

RESUMO

Increased endothelial permeability leads to excessive exudation of plasma proteins and leukocytes in the interstitium, which characterizes several vascular diseases including acute lung injury. The myosin light chain kinase long (MYLK-L) isoform is canonically known to regulate the endothelial permeability by phosphorylating myosin light chain (MLC-P). Compared to the short MYLK isoform, MYLK-L contains an additional stretch of ~919 amino acid at the N-terminus of unknown function. We show that thapsigargin and thrombin-induced SOCE was markedly reduced in Mylk-L-/- endothelial cells (EC) or MYLK-L-depleted human EC. These agonists also failed to increase endothelial permeability in MYLK-L-depleted EC and Mylk-L-/- lungs, thus demonstrating the novel role of MYLK-L-induced SOCE in increasing vascular permeability. MYLK-L augmented SOCE by increasing endoplasmic reticulum (ER)-plasma membrane (PM) junctions and STIM1 translocation to these junctions. Transduction of N-MYLK domain (amino acids 1-919 devoid of catalytic activity) into Mylk-L-/- EC rescued SOCE to the level seen in control EC in a STIM1-dependent manner. N-MYLK-induced SOCE augmented endothelial permeability without MLC-P via an actin-binding motif, DVRGLL. Liposomal-mediated delivery of N-MYLK mutant but not ∆DVRGLL-N-MYLK mutant in Mylk-L-/- mice rescued vascular permeability increase in response to endotoxin, indicating that targeting of DVRGLL motif within MYLK-L may limit SOCE-induced vascular hyperpermeability.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade Capilar , Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Quinase de Cadeia Leve de Miosina/metabolismo , Lesão Pulmonar Aguda/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Isoenzimas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo
9.
PLoS One ; 15(5): e0232338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421702

RESUMO

End-binding proteins (EBs) associate with the growing microtubule plus ends to regulate microtubule dynamics as well as the interaction with intracellular structures. EB3 contributes to pathological vascular leakage through interacting with the inositol 1,4,5-trisphosphate receptor 3 (IP3R3), a calcium channel located at the endoplasmic reticulum membrane. The C-terminal domain of EB3 (residues 200-281) is functionally important for this interaction because it contains the effector binding sites, a prerequisite for EB3 activity and specificity. Structural data for this domain is limited. Here, we report the backbone chemical shift assignments for the human EB3 C-terminal domain and computationally explore its EB3 conformations. Backbone assignments, along with computational models, will allow future investigation of EB3 structural dynamics, interactions with effectors, and will facilitate the development of novel EB3 inhibitors.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Ressonância Magnética Nuclear Biomolecular , Humanos , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína
10.
J Biol Chem ; 295(22): 7669-7685, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32327488

RESUMO

Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.


Assuntos
Antígenos CD/metabolismo , Barreira Alveolocapilar/metabolismo , Caderinas/metabolismo , Células Endoteliais/metabolismo , Fosfolipase D/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Junções Aderentes/metabolismo , Animais , Barreira Alveolocapilar/citologia , Células Endoteliais/citologia , Feminino , Humanos , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Trombina/farmacologia
11.
Am J Respir Cell Mol Biol ; 62(2): 168-177, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31409093

RESUMO

Disruption of alveolar-capillary barriers is a major complication of high-volume mechanical ventilation referred to as "ventilator-induced lung injury." The stretching force in alveoli is transmitted to endothelial cells, increasing the tension on underlying endothelial plasma membrane. The mechanosensor Piezo1, a plasma membrane cation channel, was inducibly deleted in endothelial cells of mice (Piezo1iEC-/-), which allowed us to study its role in regulating the endothelial barrier response to alveolar stretch. We observed significant increase in lung vascular permeability in Piezo1iEC-/- mice as compared with control Piezo1fl/fl mice in response to high-volume mechanical ventilation. We also observed that human lung endothelial monolayers depleted of Piezo1 and exposed to cyclic stretch had increased permeability. We identified the calcium-dependent cysteine protease calpain as a downstream target of Piezo1. Furthermore, we showed that calpain maintained stability of the endothelial barrier in response to mechanical stretch by cleaving Src kinase, which was responsible for disassembling endothelial adherens junctions. Pharmacological activation of calpain caused Src cleavage and thereby its inactivation, and it restored the disrupted lung endothelial barrier seen in Piezo1iEC-/- mice undergoing high-volume mechanical ventilation. Our data demonstrate that downregulation of Piezo1 signaling in endothelium is a critical factor in the pathogenesis of ventilator-induced lung injury, and thus augmenting Piezo1 expression or pharmacologically activating Piezo1 signaling may be an effective therapeutic strategy.


Assuntos
Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Pulmão/metabolismo , Animais , Permeabilidade Capilar/efeitos dos fármacos , Membrana Celular/metabolismo , Endotélio Vascular/metabolismo , Camundongos , Alvéolos Pulmonares/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L392-L401, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313617

RESUMO

Here we describe a novel method for studying the protein "interactome" in primary human cells and apply this method to investigate the effect of posttranslational protein modifications (PTMs) on the protein's functions. We created a novel "biomimetic microsystem platform" (Bio-MSP) to isolate the protein complexes in primary cells by covalently attaching purified His-tagged proteins to a solid microscale support. Using this Bio-MSP, we have analyzed the interactomes of unphosphorylated and phosphomimetic end-binding protein-3 (EB3) in endothelial cells. Pathway analysis of these interactomes demonstrated the novel role of EB3 phosphorylation at serine 162 in regulating the protein's function. We showed that phosphorylation "switches" the EB3 biological network to modulate cellular processes such as cell-to-cell adhesion whereas dephosphorylation of this site promotes cell proliferation. This novel technique provides a useful tool to study the role of PTMs or single point mutations in activating distinct signal transduction networks and thereby the biological function of the protein in health and disease.


Assuntos
Biomimética , Células Endoteliais/metabolismo , Endotélio/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Biomimética/métodos , Biologia Computacional/métodos , Humanos , Fosforilação , Proteínas/metabolismo , Proteômica/métodos , Transdução de Sinais/fisiologia
13.
Proc Natl Acad Sci U S A ; 116(26): 12980-12985, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31186359

RESUMO

Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary "stress failure" that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC ), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, ß-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.


Assuntos
Endotélio Vascular/patologia , Canais Iônicos/metabolismo , Microvasos/patologia , Edema Pulmonar/patologia , Insuficiência Respiratória/patologia , Junções Aderentes/patologia , Junções Aderentes/ultraestrutura , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Pressão Arterial/fisiologia , Pressão Sanguínea/fisiologia , Caderinas/genética , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/patologia , Células Endoteliais/ultraestrutura , Endotélio Vascular/citologia , Endotélio Vascular/ultraestrutura , Feminino , Técnicas de Introdução de Genes , Humanos , Pressão Hidrostática/efeitos adversos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Pulmão/irrigação sanguínea , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microvasos/citologia , Microvasos/efeitos dos fármacos , Cultura Primária de Células , Edema Pulmonar/etiologia , Edema Pulmonar/fisiopatologia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/prevenção & controle , Venenos de Aranha/farmacologia
14.
J Cell Biol ; 218(5): 1725-1742, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30948425

RESUMO

Vascular endothelial (VE) protein tyrosine phosphatase (PTP) is an endothelial-specific phosphatase that stabilizes VE-cadherin junctions. Although studies have focused on the role of VE-PTP in dephosphorylating VE-cadherin in the activated endothelium, little is known of VE-PTP's role in the quiescent endothelial monolayer. Here, we used the photoconvertible fluorescent protein VE-cadherin-Dendra2 to monitor VE-cadherin dynamics at adherens junctions (AJs) in confluent endothelial monolayers. We discovered that VE-PTP stabilizes VE-cadherin junctions by reducing the rate of VE-cadherin internalization independently of its phosphatase activity. VE-PTP serves as an adaptor protein that through binding and inhibiting the RhoGEF GEF-H1 modulates RhoA activity and tension across VE-cadherin junctions. Overexpression of the VE-PTP cytosolic domain mutant interacting with GEF-H1 in VE-PTP-depleted endothelial cells reduced GEF-H1 activity and restored VE-cadherin dynamics at AJs. Thus, VE-PTP stabilizes VE-cadherin junctions and restricts endothelial permeability by inhibiting GEF-H1, thereby limiting RhoA signaling at AJs and reducing the VE-cadherin internalization rate.


Assuntos
Junções Aderentes/fisiologia , Antígenos CD/metabolismo , Caderinas/metabolismo , Endotélio Vascular/metabolismo , Artéria Pulmonar/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Antígenos CD/genética , Caderinas/genética , Permeabilidade da Membrana Celular , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Proteínas Luminescentes/metabolismo , Fosforilação , Artéria Pulmonar/citologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Transdução de Sinais
15.
Thorax ; 74(6): 579-591, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30723184

RESUMO

INTRODUCTION: Dysregulated sphingolipid metabolism has been implicated in the pathogenesis of various pulmonary disorders. Nuclear sphingosine-1-phosphate (S1P) has been shown to regulate histone acetylation, and therefore could mediate pro-inflammatory genes expression. METHODS: Profile of sphingolipid species in bronchoalveolar lavage fluids and lung tissue of mice challenged with Pseudomonas aeruginosa (PA) was investigated. The role of nuclear sphingosine kinase (SPHK)2 and S1P in lung inflammatory injury by PA using genetically engineered mice was determined. RESULTS: Genetic deletion of Sphk2, but not Sphk1, in mice conferred protection from PA-mediated lung inflammation. PA infection stimulated phosphorylation of SPHK2 and its localisation in epithelial cell nucleus, which was mediated by protein kinase C (PKC) δ. Inhibition of PKC δ or SPHK2 activity reduced PA-mediated acetylation of histone H3 and H4, which was necessary for the secretion of pro-inflammatory cytokines, interleukin-6 and tumour necrosis factor-α. The clinical significance of the findings is supported by enhanced nuclear localisation of p-SPHK2 in the epithelium of lung specimens from patients with cystic fibrosis (CF). CONCLUSIONS: Our studies define a critical role for nuclear SPHK2/S1P signalling in epigenetic regulation of bacterial-mediated inflammatory lung injury. Targeting SPHK2 may represent a potential strategy to reduce lung inflammatory pulmonary disorders such as pneumonia and CF.


Assuntos
Lesão Pulmonar/genética , Lesão Pulmonar/microbiologia , Lisofosfolipídeos/metabolismo , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Esfingosina/análogos & derivados , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Epigênese Genética , Inflamação/genética , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Esfingosina/metabolismo
16.
J Cell Biol ; 218(1): 299-316, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30463880

RESUMO

Vascular endothelial (VE)-cadherin forms homotypic adherens junctions (AJs) in the endothelium, whereas N-cadherin forms heterotypic adhesion between endothelial cells and surrounding vascular smooth muscle cells and pericytes. Here we addressed the question whether both cadherin adhesion complexes communicate through intracellular signaling and contribute to the integrity of the endothelial barrier. We demonstrated that deletion of N-cadherin (Cdh2) in either endothelial cells or pericytes increases junctional endothelial permeability in lung and brain secondary to reduced accumulation of VE-cadherin at AJs. N-cadherin functions by increasing the rate of VE-cadherin recruitment to AJs and induces the assembly of VE-cadherin junctions. We identified the dual Rac1/RhoA Rho guanine nucleotide exchange factor (GEF) Trio as a critical component of the N-cadherin adhesion complex, which activates both Rac1 and RhoA signaling pathways at AJs. Trio GEF1-mediated Rac1 activation induces the recruitment of VE-cadherin to AJs, whereas Trio GEF2-mediated RhoA activation increases intracellular tension and reinforces Rac1 activation to promote assembly of VE-cadherin junctions and thereby establish the characteristic restrictive endothelial barrier.


Assuntos
Junções Aderentes/metabolismo , Caderinas/genética , Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Pericitos/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Junções Aderentes/ultraestrutura , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Aorta/citologia , Aorta/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Caderinas/deficiência , Caderinas/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Pericitos/ultraestrutura , Permeabilidade , Fosfoproteínas/metabolismo , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
17.
Dev Cell ; 45(1): 83-100.e7, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29634939

RESUMO

Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.


Assuntos
Núcleo Celular/fisiologia , Infecções por Citomegalovirus/virologia , Complexo de Golgi/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Montagem de Vírus/fisiologia , Movimento Celular , Núcleo Celular/virologia , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , Citomegalovirus/patogenicidade , Complexo de Golgi/fisiologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Centro Organizador dos Microtúbulos/virologia
18.
Pulm Circ ; 8(2): 2045894018767393, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29521167

RESUMO

Piezo channels are deemed to constitute one of the most important family of mechanosensing ion channels since their discovery in 2010. With recent advances in identifying their topological structure and the discovery of the agonist Yoda1 as well as the specific inhibitor GsMTx4, it is now possible to study the mechanisms by which Piezo channels are involved in physiological and pathophysiological processes. During embryonic cardiovascular development, Piezo1 senses shear stress and promotes vasculature growth. In adult mice, Piezo1 mediates the release of nitric oxide and ATP from endothelial cells to regulate blood pressure. Piezo channels also play a crucial role in cell differentiation and tissue homeostasis by exquisite mechanical force sensing. Piezo channels are also abundantly expressed in lung tissues. As the lung is exposed to complex pulmonary hemodynamics and respiratory mechanics, cells in the lung, such as microvascular endothelial cells, bear mechanical forces from blood flow shear, pulsatile strain, static pressure, and cyclic stretch due to respiratory movement. These mechanical stimuli are involved in a serial of physiological function and pathophysiological processes of the lung, many of which Piezo channels may be the key player. Mutation of genes encoding Piezo channels are also associated with hereditary human diseases, thus highlighting the critical role of Piezo channels in both tissue homeostasis and disease.

19.
Cell Mol Life Sci ; 74(22): 4189-4207, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28803370

RESUMO

The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animais , Cálcio/metabolismo , Citoesqueleto/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...