Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain Res Manag ; 2021: 6627864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34426756

RESUMO

Background: Fatigue is often the primary complaint of children with functional gastrointestinal disorders (FGDI) and other chronic overlapping pain disorders (COPC). The basis for this symptom remains unknown. We evaluated mitochondrial function in the white blood cells of these patients. Methods: This prospective Children's Wisconsin IRB approved study recruited subjects aging 10-18 years from pediatric neurogastroenterology clinics and healthy comparison subjects (HC). Environmental and oxidative stressors can damage the mitochondrial respiratory chain. The known low-grade inflammation in COPC could, therefore, impact the respiratory chain and theoretically account for the disabling fatigue so often voiced by patients. Mitochondrial energy generation can be easily measured in peripheral mononuclear cells (PMC) as a general marker by the Seahorse XF96 Extracellular Flux Analyzer. We measured 5 parameters of oxygen consumption using this methodology: basal respiration (BR), ATP linked oxygen consumption (ATP-LC), maximal oxygen consumption rate (max R), spare respiratory capacity (SRC), and extracellular acidification rate (ECAR), which reflect non-electron chain energy generation through glycolysis. In health, we expect high ATP linked respiration, high reserve capacity, low proton leak, and low non-mitochondrial respiration. In disease, the proton leak typically increases, ATP demand increases, and there is decreased reserve capacity with increased non-mitochondrial respiration. Findings and clinical data were compared to healthy control subjects using a Mann-Whitney test for skewed variables, Fisher's exact test for dichotomous variables, and regression tree for association with functional outcome (functional disability inventory, FDI). Results: 19 HC and 31 COPC showed no statistically significant difference in age. FGID, orthostatic intolerance, migraine, sleep disturbance, and chronic fatigue were present in the majority of COPC subjects. BR, ECAR, and ATP-LC rates were lower in the COPC group. The low BR and ATP-LC suggest that mitochondria are stressed with decreased ability to produce ATP. Tree analysis selected SRC as the best predictor of functional disability: patients with SRC >150 had a greater FDI (more disability) compared to patients with SRC <=150, p-value = 0.021. Conclusion: Subjects with COPC have reduced mitochondrial capacity to produce ATP. Predisposing genetic factors or reversible acquired changes may be responsible. A higher SRC best predicts disability. Since a higher SRC is typically associated with more mitochondrial reserve, the SRC may indicate an underutilized available energy supply related to inactivity, or a "brake" on mitochondrial function. Prospective longitudinal studies can likely discern whether these findings represent deconditioning, true mitochondrial dysfunction, or both.


Assuntos
Metabolismo Energético , Gastroenteropatias , Dor , Humanos , Mitocôndrias/metabolismo , Dor/metabolismo , Estudos Prospectivos
2.
Physiol Genomics ; 50(6): 440-447, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29602296

RESUMO

Studies exploring the development of hypertension have traditionally been unable to distinguish which of the observed changes are underlying causes from those that are a consequence of elevated blood pressure. In this study, a custom-designed servo-control system was utilized to precisely control renal perfusion pressure to the left kidney continuously during the development of hypertension in Dahl salt-sensitive rats. In this way, we maintained the left kidney at control blood pressure while the right kidney was exposed to hypertensive pressures. As each kidney was exposed to the same circulating factors, differences between them represent changes induced by pressure alone. RNA sequencing analysis identified 1,613 differently expressed genes affected by renal perfusion pressure. Three pathway analysis methods were applied, one a novel approach incorporating arterial pressure as an input variable allowing a more direct connection between the expression of genes and pressure. The statistical analysis proposed several novel pathways by which pressure affects renal physiology. We confirmed the effects of pressure on p-Jnk regulation, in which the hypertensive medullas show increased p-Jnk/Jnk ratios relative to the left (0.79 ± 0.11 vs. 0.53 ± 0.10, P < 0.01, n = 8). We also confirmed pathway predictions of mitochondrial function, in which the respiratory control ratio of hypertensive vs. control mitochondria are significantly reduced (7.9 ± 1.2 vs. 10.4 ± 1.8, P < 0.01, n = 6) and metabolomic profile, in which 14 metabolites differed significantly between hypertensive and control medullas ( P < 0.05, n = 5). These findings demonstrate that subtle differences in the transcriptome can be used to predict functional changes of the kidney as a consequence of pressure elevation.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inflamação/genética , Medula Renal/fisiologia , Medula Renal/fisiopatologia , Redes e Vias Metabólicas/genética , Perfusão , Animais , Teorema de Bayes , Respiração Celular , Hipertensão/genética , Metaboloma , Metabolômica , Mitocôndrias/metabolismo , Ratos Endogâmicos Dahl , Análise de Regressão , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...