Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203320

RESUMO

In this study, we applied argon plasma treatment to titanium surfaces with nanostructures deposited by concentrated alkali treatment and investigated the effects on the surface of the material and the tissue surrounding an implant site. The results showed that the treatment with argon plasma removed carbon contaminants and increased the surface energy of the material while the nanoscale network structure deposited on the titanium surface remained in place. Reactive oxygen species reduced the oxidative stress of bone marrow cells on the treated titanium surface, creating a favorable environment for cell proliferation. Good results were observed in vitro evaluations using rat bone marrow cells. The group treated with argon plasma exhibited the highest apatite formation in experiments using simulated body fluids. The results of in vivo evaluation using rat femurs revealed that the treatment improved the amount of new bone formation around an implant. Thus, the results demonstrate that argon plasma treatment enhances the ability of nanostructured titanium surfaces to induce hard tissue differentiation and supports new bone formation around an implant site.


Assuntos
Nanoestruturas , Gases em Plasma , Animais , Ratos , Argônio/farmacologia , Titânio/farmacologia , Gases em Plasma/farmacologia , Plasma
2.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203519

RESUMO

In a previous study, we successfully coated hydroxyapatite (HAp) onto titanium (Ti) plates using the erbium-doped yttrium aluminum garnet pulsed-laser deposition (Er:YAG-PLD) method. In this study, we performed further experiments to validate the in vitro osteogenic properties, macrophage polarization, and in vivo osseointegration activity of HAp-coated Ti (HAp-Ti) plates and screws. Briefly, we coated a HAp film onto the surfaces of Ti plates and screws via Er:YAG-PLD. The surface morphological, elemental, and crystallographic analyses confirmed the successful surface coating. The macrophage polarization and osteogenic induction were evaluated in macrophages and rat bone marrow mesenchymal stem cells, and the in vivo osteogenic properties were studied. The results showed that needle-shaped nano-HAp promoted the early expression of osteogenic and immunogenic genes in the macrophages and induced excellent M2 polarization properties. The calcium deposition and osteocalcin production were significantly higher in the HAp-Ti than in the uncoated Ti. The implantation into rat femurs revealed that the HAp-coated materials had superior osteoinductive and osseointegration activities compared with the Ti, as assessed by microcomputed tomography and histology. Thus, HAp film on sandblasted Ti plates and screws via Er:YAG-PLD enhances hard-tissue differentiation, macrophage polarization, and new bone formation in tissues surrounding implants both in vitro and in vivo.


Assuntos
Osteogênese , Titânio , Animais , Ratos , Titânio/farmacologia , Microtomografia por Raio-X , Lasers , Durapatita/farmacologia , Macrófagos
3.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499747

RESUMO

Pure titanium is used in dental implants owing to its excellent biocompatibility and physical properties. However, the aging of the material during storage is detrimental to the long-term stability of the implant after implantation. Therefore, in this study, we attempted to improve the surface properties and circumvent the negative effects of material aging on titanium implants by using a portable handheld nonthermal plasma device capable of piezoelectric direct discharge to treat pure titanium discs with nitrogen gas. We evaluated the osteogenic properties of the treated samples by surface morphology and elemental analyses, as well as in vitro and in vivo experiments. The results showed that nonthermal atmospheric-pressure nitrogen plasma can improve the hydrophilicity of pure titanium without damaging its surface morphology while introducing nitrogen-containing functional groups, thereby promoting cell attachment, proliferation, and osseointegration to some extent. Therefore, nitrogen plasma treatment may be a promising method for the rapid surface treatment of titanium implants.


Assuntos
Implantes Dentários , Gases em Plasma , Titânio , Nitrogênio , Osseointegração , Propriedades de Superfície
4.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269557

RESUMO

Standard zirconia implants used in restoration still present problems related to inertness and long-term stability. Various physicochemical approaches have been used to modify the implant surfaces to improve early and late bone-to-implant integration; however, no ideal surface modification has been reported. This study used pulsed laser deposition to deposit a fluorinated hydroxyapatite (FHA) film on a zirconia implant to create a biologically active surface. The film prepared was uniform, dense, and crack-free, and exhibited granular surface droplets; it also presented excellent mechanical strength and favorable biological behavior. The FHA-coated implant was implanted on the femur of Sprague-Dawley rats, and various tests and analyses were performed. Results show that the in vitro initial cell activity on the FHA-coated samples was enhanced. In addition, higher alkaline phosphatase activity and cell mineralization were detected in cells cultured on the FHA-coated groups. Further, the newly formed bone volume of the FHA-coated group was higher than that of the bare micro-adjusted composite nano-zirconia (NANOZR) group. Therefore, the FHA film facilitated osseointegration and may improve the long-term survival rates of dental implants, and could become part of a new treatment technology for implant surfaces, promoting further optimization of NANOZR implant materials.


Assuntos
Materiais Revestidos Biocompatíveis/administração & dosagem , Durapatita/química , Fêmur/cirurgia , Flúor/química , Osseointegração/efeitos dos fármacos , Zircônio/administração & dosagem , Fosfatase Alcalina/metabolismo , Animais , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Implantes Dentários , Fêmur/citologia , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Lasers , Masculino , Teste de Materiais , Nanoestruturas , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Zircônio/química , Zircônio/farmacologia
5.
Materials (Basel) ; 15(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35329550

RESUMO

Recent advances in dental materials involving the development of various biomaterials have been reported. Accordingly, clinicians must incorporate the new dental materials in their practice to respond to the increasing needs of patients. Nanotechnology is defined as a science that deals with nanoscale materials. The use of nanomaterials is gaining popularity in the dental industry for processing and manipulating nanoscale substances in modern dentistry. In this special issue, we invited the submission of several research papers on the development of dental materials. In this general discussion, we briefly explain the relevant research reports with an aim that developments in this field will contribute toward the development of dental care in the future.

6.
Materials (Basel) ; 15(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35329758

RESUMO

The surface of titanium (Ti) dental implants must be modified to improve their applicability, owing to the biological inertness of Ti. This study aims to use sandblasting as a pretreatment method and prepare a hydroxyapatite (HA) coating on Ti to improve its biocompatibility and induce bone bonding and osteogenesis. In this paper, sandblasted Ti discs were coated with α-tricalcium phosphate (α-TCP) via Er:YAG pulsed laser deposition (Er:YAG-PLD). An HA coating was then obtained via the hydrothermal treatment of the discs at 90 °C for 10 h. The surface characteristics of the samples were evaluated by SEM, SPM, XPS, XRD, FTIR, and tensile tests. Rat bone marrow mesenchymal stem cells were seeded on the HA-coated discs to determine cellular responses in vitro. The surface characterization results indicated the successful transformation of the HA coating with a nanorod-like morphology, and its surface roughness increased. In vitro experiments revealed increased cell attachment on the HA-coated discs, as did the cell morphology of fluorescence staining and SEM analysis; in contrast, there was no increase in cell proliferation. This study confirms that Er:YAG-PLD could be used as an implant surface-modification technique to prepare HA coatings with a nanorod-like morphology on Ti discs.

7.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054795

RESUMO

Polyetheretherketone (PEEK) is a potential substitute for conventional metallic biomedical implants owing to its superior mechanical and chemical properties, as well as biocompatibility. However, its inherent bio-inertness and poor osseointegration limit its use in clinical applications. Herein, thin titanium films were deposited on the PEEK substrate by plasma sputtering, and porous nanonetwork structures were incorporated on the PEEK surface by alkali treatment (PEEK-TNS). Changes in the physical and chemical characteristics of the PEEK surface were analyzed to establish the interactions with cell behaviors. The osteoimmunomodulatory properties were evaluated using macrophage cells and osteoblast lineage cells. The functionalized nanostructured surface of PEEK-TNS effectively promoted initial cell adhesion and proliferation, suppressed inflammatory responses, and induced macrophages to anti-inflammatory M2 polarization. Compared with PEEK, PEEK-TNS provided a more beneficial osteoimmune environment, including increased levels of osteogenic, angiogenic, and fibrogenic gene expression, and balanced osteoclast activities. Furthermore, the crosstalk between macrophages and osteoblast cells showed that PEEK-TNS could provide favorable osteoimmunodulatory environment for bone regeneration. PEEK-TNS exhibited high osteogenic activity, as indicated by alkaline phosphatase activity, osteogenic factor production, and the osteogenesis/osteoclastogenesis-related gene expression of osteoblasts. The study establishes that the fabrication of titanate nanonetwork structures on PEEK surfaces could extract an adequate immune response and favorable osteogenesis for functional bone regeneration. Furthermore, it indicates the potential of PEEK-TNS in implant applications.


Assuntos
Benzofenonas/farmacologia , Fatores Imunológicos/farmacologia , Nanopartículas/química , Osteogênese , Polímeros/farmacologia , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Células RAW 264.7 , Propriedades de Superfície
8.
Materials (Basel) ; 14(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885628

RESUMO

There are treatments available for enamel demineralization or acid erosion, but they have limitations. We aimed to manufacture a device that could directly form a hydroxyapatite (HAp) film coating on the enamel with a chairside erbium-doped yttrium aluminum garnet (Er:YAG) laser using the pulsed laser deposition (PLD) method for repairing enamel defects. We used decalcified bovine enamel specimens and compacted α-tricalcium phosphate (α-TCP) as targets of Er:YAG-PLD. With irradiation, an α-TCP coating layer was immediately deposited on the specimen surface. The morphological, mechanical, and chemical characteristics of the coatings were evaluated using scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray diffractometry (XRD), and a micro-Vickers hardness tester. Wear resistance, cell attachment of the HAp coatings, and temperature changes during the Er:YAG-PLD procedure were also observed. SEM demonstrated that the α-TCP powder turned into microparticles by irradiation. XRD peaks revealed that the coatings were almost hydrolyzed into HAp within 2 days. Micro-Vickers hardness indicated that the hardness lost by decalcification was almost recovered by the coatings. The results suggest that the Er:YAG-PLD technique is useful for repairing enamel defects and has great potential for future clinical applications.

9.
Materials (Basel) ; 14(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832206

RESUMO

Oral dysfunction due to peri-implantitis and shortened life of implants has become a major concern. Self-care and removal of oral biofilms by professional mechanical tooth cleaning (PMTC) are indispensable for its prevention. However, if the surface roughness of the implant is increased, it may result in the adhesion of biofilm in the oral cavity. Therefore, the PMTC method can serve for long-term implant management. Calcium carbonate (CaCO3) has been used as a cleaning method for implant surfaces; however, there is concern that the implant surface roughness could increase due to particle collision. Therefore, in this study, to establish a blasting cleaning method that does not adversely affect the implant surface, a new blasting cleaning method using agar particles was devised and its practical application examined. When the simulated stains were blasted with white alumina (WA) abrasive grains and CaCO3 particles, the simulated stains were almost removed, the surface roughness changed to a satin-finished surface-which was thought to be due to fine scratches-and the surface roughness increased. Most of the simulated stains were removed on the surface of the sample blasted with glycine particles and agar particles. Conversely, the gloss of the sample surface was maintained after cleaning, and the increase in surface roughness was slight.

10.
Mater Sci Eng C Mater Biol Appl ; 129: 112377, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579896

RESUMO

The immunomodulatory antibacterial activity and osteoimmunomodulatory properties of implantable biomaterials significantly influence bone regeneration. Various types of ultraviolet (UV) instrument are currently in use to greatly enhance the antibacterial activity and osteoconductive capability of titanium, it remains unclear how UV treatment modulates immune response. Compared to traditional UV treatment, the combination of low-dose ozone with UV irradiation is considered a new option to give benefits to surface modification and reduce the drawbacks of UV and ozone individually. Herein, the aim of this study was to elucidate the immune-modulatory properties of macrophages on UV/ozone-irradiated titanium that serve as defense against S. aureus and the crosstalk between immune cells and osteoblasts. Three different cell and bacteria co-culture systems were developed in order to investigate the race between host cells and bacteria to occupy the surface. In vitro immunological experiments indicated that UV/ozone irradiation significantly enhanced the phagocytic and bactericidal activity of macrophages against S. aureus. Further, in vitro and in vivo studies evidenced the favorable osteoimmune environment for osteogenic differentiation and bone formation. This research suggests vital therapeutic potential of UV/ozone irradiation for preventing the biomaterial-associated infections and achieving favorable bone formation simultaneously.


Assuntos
Ozônio , Titânio , Antibacterianos/farmacologia , Regeneração Óssea , Imunidade , Osteogênese , Ozônio/farmacologia , Staphylococcus aureus , Propriedades de Superfície , Titânio/farmacologia
11.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299241

RESUMO

In this paper, we suggest that the atmospheric pressure plasma treatment of pure titanium metal may be useful for improving the ability of rat bone marrow cells (RBMCs) to induce hard tissue differentiation. Previous studies have reported that the use of argon gas induces a higher degree of hard tissue formation. Therefore, this study compares the effects of plasma treatment with argon gas on the initial adhesion ability and hard tissue differentiation-inducing ability of RBMCs. A commercially available titanium metal plate was used as the experimental material. A plate polished using water-resistant abrasive paper #1500 was used as the control, and a plate irradiated with argon mixed with atmospheric pressure plasma was used as the experimental plate. No structural change was observed on the surface of the titanium metal plate in the scanning electron microscopy results, and no change in the surface roughness was observed via scanning probe microscopy. X-ray photoelectron spectroscopy showed a decrease in the carbon peak and the formation of hydroxide in the experimental group. In the distilled water drop test, a significant decrease in the contact angle was observed for the experimental group, and the results indicated superhydrophilicity. Furthermore, the bovine serum albumin adsorption, initial adhesion of RBMCs, alkaline phosphatase activity, calcium deposition, and genetic marker expression of rat bone marrow cells were higher in the experimental group than those in the control group at all time points. Rat distal femur model are used as in vivo model. Additionally, microcomputed tomography analysis showed significantly higher results for the experimental group, indicating a large amount of the formed hard tissue. Histopathological evaluation also confirmed the presence of a prominent newly formed bone seen in the images of the experimental group. These results indicate that the atmospheric pressure plasma treatment with argon gas imparts superhydrophilicity, without changing the properties of the pure titanium plate surface. It was also clarified that it affects the initial adhesion of bone marrow cells and the induction of hard tissue differentiation.


Assuntos
Argônio/farmacologia , Osseointegração/efeitos dos fármacos , Gases em Plasma/química , Animais , Argônio/química , Pressão Atmosférica , Células da Medula Óssea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Varredura/métodos , Osseointegração/fisiologia , Osteogênese/efeitos dos fármacos , Espectroscopia Fotoeletrônica/métodos , Gases em Plasma/farmacologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/química , Microtomografia por Raio-X/métodos
12.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203231

RESUMO

Early osseointegration is important to achieve initial stability after implant placement. We have previously reported that atmospheric-pressure plasma treatment confers superhydrophilicity to titanium. Herein, we examined the effects of titanium implant material, which was conferred superhydrophilicity by atmospheric-pressure plasma treatment, on the surrounding tissue in rat femur. Control and experimental groups included untreated screws and those irradiated with atmospheric-pressure plasma using piezobrush, respectively. The femurs of 8-week-old male Sprague-Dawley rats were used for in vivo experiments. Various data prepared from the Micro-CT analysis showed results showing that more new bone was formed in the test group than in the control group. Similar results were shown in histological analysis. Thus, titanium screw, treated with atmospheric-pressure plasma, could induce high hard tissue differentiation even at the in vivo level. This method may be useful to achieve initial stability after implant placement.


Assuntos
Implantes Dentários , Titânio/química , Animais , Fêmur/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/farmacologia
13.
Materials (Basel) ; 14(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379367

RESUMO

Primary stability and osseointegration are major challenges in dental implant treatments, where the material surface properties and wettability are critical in the early formation of hard tissue around the implant. In this study, a quartz crystal microbalance (QCM) was used to measure the nanogram level amount of protein and bone marrow cells adhered to the surfaces of titanium (Ti) surface in real time. The effects of ultraviolet (UV) and atmospheric-pressure plasma treatment to impart surface hydrophilicity to the implant surface were evaluated. The surface treatment methods resulted in a marked decrease in the surface carbon (C) content and increase in the oxygen (O) content, along with super hydrophilicity. The results of QCM measurements showed that adhesion of both adhesive proteins and bone marrow cells was enhanced after surface treatment. Although both methods produced implants with good osseointegration behavior and less reactive oxidative species, the samples treated with atmospheric pressure plasma showed the best overall performance and are recommended for clinical use. It was verified that QCM is an effective method for analyzing the initial adhesion process on dental implants.

14.
Materials (Basel) ; 13(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114595

RESUMO

The Bio-C Sealer is a recently developed high-plasticity, calcium-silicate-based, ready-to-use material. In the present study, chemical elements of the materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of the Bio-C Sealer was investigated using cytotoxicity tests and histological responses in the roots of dogs' teeth. XRD, SEM, and FTIR produced hydrated calcium silicate in the presence of water molecules. In addition, FTIR showed the formation of calcium hydroxide and polyethylene glycol, a dispersing agent. The 1:4 dilutions of Bio-C Sealer presented weaker cytotoxicity than the Calcipex II in an in vitro system using the V-79 cell line. After 90 d, the periradicular tissue response of beagle dog roots was histologically evaluated. Absence of periradicular inflammation was reported in 17 of the 18 roots assessed with the Bio-C Sealer, whereas mature vertical periodontal ligament fibers were observed in the apical root ends filled with the Bio-C Sealer. Based on these results and previous investigations, the Bio-C Sealer is recommended as an effective root-end filling material. These results are relevant for clinicians considering the use of Bio-C Sealer for treating their patients.

15.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050494

RESUMO

Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sufficient biocompatibility. In the present study, we explored the material surface functionalization and assessed the initial adhesion of rat bone marrow mesenchymal stem cells, their osteogenic differentiation, and production of hard tissue, on plasma-treated alkali-modified nano-ZR. Superhydrophilicity was observed on the plasma-treated surface of alkali-treated nano-ZR along with hydroxide formation and reduced surface carbon. A decreased contact angle was also observed as nano-ZR attained an appropriate wettability index. Treated samples showed higher in vitro bovine serum albumin (BSA) adsorption, initial adhesion of bone marrow and endothelial vascular cells, high alkaline phosphatase activity, and increased expression of bone differentiation-related factors. Furthermore, the in vivo performance of treated nano-ZR was evaluated by implantation in the femur of male Sprague-Dawley rats. The results showed that the amount of bone formed after the plasma treatment of alkali-modified nano-ZR was higher than that of untreated nano-ZR. Thus, induction of superhydrophilicity in nano-ZR via atmospheric pressure plasma treatment affects bone marrow and vascular cell adhesion and promotes bone formation without altering other surface properties.


Assuntos
Álcalis/química , Álcalis/farmacologia , Óxido de Alumínio/química , Nanocompostos/química , Plasma , Zircônio/química , Albuminas/química , Albuminas/metabolismo , Álcalis/farmacocinética , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Nanocompostos/ultraestrutura , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Plasma/química , Análise Espectral
16.
Materials (Basel) ; 13(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570895

RESUMO

Nanostructured zirconia/alumina composite (NANOZR) has been explored as a suitable material for fabricating implants for patients with metal allergy. In this study, we examined the effect of UV treatment on the NANOZR surface. The experimental group was UV-treated NANOZR and the control group was untreated NANOZR. Observation of the surface of the UV-treated materials revealed no mechanical or structural change; however, the carbon content on the material surface was reduced, and the material surface displayed superhydrophilicity. Further, the effects of the UV-induced superhydrophilic properties of NANOZR plates on the adhesion behavior of various cells were investigated. Treatment of the NANOZR surface was found to facilitate protein adsorption onto it. An in vitro evaluation using rat bone marrow cells, human vascular endothelial cells, and rat periodontal ligament cells revealed high levels of adhesion in the experimental group. In addition, it was clarified that the NANOZR surface forms active oxygen and suppresses the generation of oxidative stress. Overall, the study results suggested that UV-treated NANOZR is useful as a new ceramic implant material.

17.
Materials (Basel) ; 13(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429186

RESUMO

Contamination of implants is inevitable during different steps of production as well as during the clinical use. We devised a new implant cleaning strategy to restore the bioactivities on dental implant surfaces. We evaluated the efficiency of the Finevo cleaning system, and Ultraviolet and Plasma treatments to decontaminate hydrocarbon-contaminated titanium disks. The surfaces of the contaminated titanium disks cleaned using the Finevo cleaning system were similar to those of the uncontaminated titanium disks in scanning electron microscopy and X-ray photoelectron spectroscopy analysis, but no obvious change in the roughness was observed in the scanning probe microscopy analysis. The rat bone marrow mesenchymal stem cells (rBMMSCs) cultured on the treated titanium disks attached to and covered the surfaces of disks cleaned with the Finevo cleaning system. The alkaline phosphatase activity, calcium deposition, and osteogenesis-related gene expression in rBMMSCs on disks cleaned using the Finevo cleaning system were higher compared to those in the ultraviolet and plasma treatments, displaying better cell functionality. Thus, the Finevo cleaning system can enhance the attachment, differentiation, and mineralization of rBMMSCs on treated titanium disk surfaces. This research provides a new strategy for cleaning the surface of contaminated titanium dental implants and for restoration of their biological functions.

18.
Int J Mol Sci ; 21(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429471

RESUMO

Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.


Assuntos
Descontaminação , Nanoestruturas/química , Osseointegração/efeitos dos fármacos , Gases em Plasma/farmacologia , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Imageamento Tridimensional , Espaço Intracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanoestruturas/ultraestrutura , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Próteses e Implantes , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Microtomografia por Raio-X
19.
Biomaterials ; 235: 119784, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31981763

RESUMO

Advancing bone implant engineering offers the opportunity to overcome crucial medical challenges and improve clinical outcomes. Although the establishment of a functional vascular network is crucial for bone development, its regeneration inside bone tissue has only received limited attention to date. Herein, we utilize siRNA-decorated particles to engineer a hierarchical nanostructured coating on clinically used titanium implants for the synergistic regeneration of skeletal and vascular tissues. Specifically, an siRNA was designed to target the regulation of cathepsin K and conjugated on nanoparticles. The functionalized nanoparticles were assembled onto the bone implant to form a hierarchical nanostructured coating. By regulating mRNA transcription, the coating significantly promotes cell viability and growth factor release related to vascularization. Moreover, microchip-based experiments demonstrate that the nanostructured coating facilitates macrophage-induced synergy in up-regulation of at least seven bone and vascular growth factors. Ovariectomized rat and comprehensive beagle dog models highlight that this siRNA-integrated nanostructured coating possesses all the key traits of a clinically promising candidate to address the myriad of challenges associated with bone regeneration.


Assuntos
Materiais Revestidos Biocompatíveis , Nanoestruturas , Animais , Regeneração Óssea , Cães , RNA Interferente Pequeno , Ratos , Propriedades de Superfície , Titânio
20.
Int J Mol Sci ; 20(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795108

RESUMO

This study describes the production of a new material composed of pure titanium (Ti) metal with a crystallized nanostructure and investigated whether heat treatment and ultraviolet (UV) irradiation improved its biocompatibility and antibacterial properties. We compared the performance of UV-irradiated and non-irradiated Ti nanosheets (TNS) formed by dark alkaline treatment and heating at 600 °C with that of untreated pure Ti nanostructure (positive control). In vitro and in vivo experiments to assess biocompatibility and effects on cell behavior were performed using human umbilical vein endothelial cells and rat bone marrow cells. The material surface was characterized by X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the irradiated material were evaluated using Staphylococcus aureus, a common pathogenic bacterium. The UV-irradiated TNS exhibited high angiogenic capacity and promoted cell adherence and differentiation relative to the control. Further, surface analysis via XPS revealed a lower C peak for the UV-treated material, indicating a reduced amount of dirt on the material surface. Moreover, UV irradiation decreased the viability of S. aureus on the material surface by stimulating reactive oxygen species production. The biocompatibility and antibacterial properties of the TNS were improved by UV irradiation. Thus, TNS may serve as a useful material for fabrication of dental implants.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Nanopartículas/química , Titânio/química , Raios Ultravioleta , Animais , Antibacterianos/efeitos adversos , Antibacterianos/efeitos da radiação , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/efeitos da radiação , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Ratos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...