Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101933, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427648

RESUMO

Hyperammonemia is known to cause various neurological dysfunctions such as seizures and cognitive impairment. Several studies have suggested that hyperammonemia may also be linked to the development of Alzheimer's disease (AD). However, the direct evidence for a role of ammonia in the pathophysiology of AD remains to be discovered. Herein, we report that hyperammonemia increases the amount of mature amyloid precursor protein (mAPP) in astrocytes, the largest and most prevalent type of glial cells in the central nervous system that are capable of metabolizing glutamate and ammonia, and promotes amyloid beta (Aß) production. We demonstrate the accumulation of mAPP in astrocytes was primarily due to enhanced endocytosis of mAPP from the plasma membrane. A large proportion of internalized mAPP was targeted not to the lysosome, but to the endoplasmic reticulum, where processing enzymes ß-secretase BACE1 (beta-site APP cleaving enzyme 1) and γ-secretase presenilin-1 are expressed, and mAPP is cleaved to produce Aß. Finally, we show the ammonia-induced production of Aß in astrocytic endoplasmic reticulum was specific to Aß42, a principal component of senile plaques in AD patients. Our studies uncover a novel mechanism of Aß42 production in astrocytes and also provide the first evidence that ammonia induces the pathogenesis of AD by regulating astrocyte function.


Assuntos
Doença de Alzheimer , Amônia , Peptídeos beta-Amiloides , Astrócitos , Hiperamonemia , Doença de Alzheimer/fisiopatologia , Amônia/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/patologia , Retículo Endoplasmático/metabolismo , Humanos , Hiperamonemia/metabolismo
2.
Carbohydr Polym ; 174: 1034-1040, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821025

RESUMO

We evaluated the capacity of chitosan nanofiber (CNF)- and poly(ethylene glycol) (PEG)-based hydrogel/calcium phosphate hybrid (CNF-PEG/CaP) composites to act as scaffolding materials. CNF-PEG/CaP composites were fabricated by mineralization of CNF-PEG hydrogels using an alternate soaking method. The amount of CaP mineralized on CNF-PEG hydrogels increased as the ratio of CNF in the CNF-PEG hydrogel increased. Young's modulus of CNF-PEG/CaP hydrogels was enhanced by increase in CNF ratio. It was further confirmed that osteoblasts embedded on the CNF-PEG/CaP composites were viable after incubation for 5days and firmly attached to the CaP porous layer, forming an extensive cell-scaffold leading to cell-cell interactions. These results indicated that the micro-porous structure of CNF-PEG hydrogels is suitable for CaP to be utilized as a scaffold for bone regeneration.

3.
Microbes Environ ; 29(4): 413-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25491753

RESUMO

Pseudomonas fluorescens Pf0-1 exhibited chemotactic responses to l-malate, succinate, and fumarate. We constructed a plasmid library of 37 methyl-accepting chemotaxis protein (MCP) genes of P. fluorescens Pf0-1. To identify a MCP for l-malate, the plasmid library was screened using the PA2652 mutant of Pseudomonas aeruginosa PAO1, a mutant defective in chemotaxis to l-malate. The introduction of Pfl01_0728 and Pfl01_3768 genes restored the ability of the PA2652 mutant to respond to l-malate. The Pfl01_0728 and Pfl01_3768 double mutant of P. fluorescens Pf0-1 showed no response to l-malate or succinate, while the Pfl01_0728 single mutant did not respond to fumarate. These results indicated that Pfl01_0728 and Pfl01_3768 were the major MCPs for l-malate and succinate, and Pfl01_0728 was also a major MCP for fumarate. The Pfl01_0728 and Pfl01_3768 double mutant unexpectedly exhibited stronger responses toward the tomato root exudate and amino acids such as proline, asparagine, methionine, and phenylalanine than those of the wild-type strain. The ctaA, ctaB, ctaC (genes of the major MCPs for amino acids), Pfl01_0728, and Pfl01_3768 quintuple mutant of P. fluorescens Pf0-1 was less competitive than the ctaA ctaB ctaC triple mutant in competitive root colonization, suggesting that chemotaxis to l-malate, succinate, and/or fumarate was involved in tomato root colonization by P. fluorescens Pf0-1.


Assuntos
Quimiotaxia , Fumaratos/metabolismo , Malatos/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/fisiologia , Solanum lycopersicum/microbiologia , Ácido Succínico/metabolismo , Biblioteca Gênica , Teste de Complementação Genética , Mutação , Plasmídeos , Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/genética
4.
Microbes Environ ; 27(4): 462-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22972385

RESUMO

Pseudomonas fluorescens Pf0-1 showed positive chemotactic responses toward 20 commonly-occurring l-amino acids. Genomic analysis revealed that P. fluorescens Pf0-1 possesses three genes (Pfl01_0124, Pfl01_0354, and Pfl01_4431) homologous to the Pseudomonas aeruginosa PAO1 pctA gene, which has been identified as a chemotaxis sensory protein for amino acids. When Pf01_4431, Pfl01_0124, and Pfl01_0354 were introduced into the pctA pctB pctC triple mutant of P. aeruginosa PAO1, a mutant defective in chemotaxis to amino acids, its transformants showed chemotactic responses to 18, 16, and one amino acid, respectively. This result suggests that Pf01_4431, Pfl01_0124, and Pfl01_0354 are chemotaxis sensory proteins for amino acids and their genes were designated ctaA, ctaB, and ctaC, respectively. The ctaA ctaB ctaC triple mutant of P. fluorescens Pf0-1 showed only weak responses to Cys and Pro but no responses to the other 18 amino acids, indicating that CtaA, CtaB, and CtaC are major chemotaxis sensory proteins in P. fluorescens Pf0-1. Tomato root colonization by P. fluorescens strains was analyzed by gnotobiotic competitive root colonization assay. It was found that ctaA ctaB ctaC mutant was less competitive than the wild-type strain, suggesting that chemotaxis to amino acids, major components of root exudate, has an important role in root colonization by P. fluorescens Pf0-1. The ctaA ctaB ctaC triple mutant was more competitive than the cheA mutant of P. fluorescens Pf0-1, which is non-chemotactic, but motile. This result suggests that chemoattractants other than amino acids are also involved in root colonization by P. fluorescens Pf0-1.


Assuntos
Aminoácidos , Quimiotaxia/genética , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores Quimiotáticos/genética , Quimiotaxia/fisiologia , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Genes Bacterianos , Solanum lycopersicum/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...