Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18845, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552168

RESUMO

We report on magnetotransport in a high-quality graphene device, which is based on monolayer graphene (Gr) encapsulated by hexagonal boron nitride (hBN) layers, i.e., hBN/Gr/hBN stacks. In the vicinity of the Dirac point, a negative magnetoconductance is observed for high temperatures > ~ 40 K, whereas it becomes positive for low temperatures ≤ ~ 40 K, which implies an interplay of quantum interferences in Dirac materials. The elastic scattering mechanism in hBN/Gr/hBN stacks contrasts with that of conventional graphene on SiO2, and our ultra-clean graphene device shows nonzero magnetoconductance for high temperatures of up to 300 K.

2.
Sci Rep ; 9(1): 3031, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816251

RESUMO

We report on the observation of quantum transport and interference in a graphene device that is attached with a pair of split gates to form an electrostatically-defined quantum point contact (QPC). In the low magnetic field regime, the resistance exhibited Fabry-Pérot (FP) resonances due to np'n(pn'p) cavities formed by the top gate. In the quantum Hall (QH) regime with a high magnetic field, the edge states governed the phenomena, presenting a unique condition where the edge channels of electrons and holes along a p-n junction acted as a solid-state analogue of a monochromatic light beam. We observed a crossover from the FP to QH regimes in ballistic graphene QPC under a magnetic field with varying temperatures. In particular, the collapse of the QH effect was elucidated as the magnetic field was decreased. Our high-mobility graphene device enabled observation of such quantum coherence effects up to several tens of kelvins. The presented device could serve as one of the key elements in future electronic quantum optic devices.

3.
Phys Chem Chem Phys ; 18(46): 31600-31605, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27834980

RESUMO

Single crystal sapphire and diamond surfaces are used as planar, atomically flat insulating surfaces, for the deposition of the diacetylene compound 10,12-nonacosadiynoic acid. The surface assembly is compared with results on hexagonal boron nitride (h-BN), highly oriented pyrolytic graphite (HOPG) and MoS2 surfaces. A perfectly flat-lying monolayer of 10,12-nonacosadiynoic acid self-assembles on h-BN like on HOPG and MoS2. On sapphire and oxidized diamond surfaces, we observed assemblies of standing-up molecular layers. Surface assembly is driven by surface electrostatic dipoles. Surface polarity is partially controlled using a hydrogenated diamond surface or totally screened by the deposition of a graphene layer on the sapphire surface. This results in a perfectly flat and organized SAM on graphene, which is ready for on-surface polymerization of long and isolated molecular wires under ambient conditions.

5.
Sci Rep ; 5: 11723, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26122468

RESUMO

Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of not only graphene but also massless Dirac electron systems. These results offer a promising way to design electron interferometers in graphene.

6.
ACS Nano ; 8(12): 12836-42, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25470503

RESUMO

Understanding the interfacial electrical properties between metallic electrodes and low-dimensional semiconductors is essential for both fundamental science and practical applications. Here we report the observation of thickness reduction induced crossover of electrical contact at Au/MoS2 interfaces. For MoS2 thicker than 5 layers, the contact resistivity slightly decreases with reducing MoS2 thickness. By contrast, the contact resistivity sharply increases with reducing MoS2 thickness below 5 layers, mainly governed by the quantum confinement effect. We find that the interfacial potential barrier can be finely tailored from 0.3 to 0.6 eV by merely varying MoS2 thickness. A full evolution diagram of energy level alignment is also drawn to elucidate the thickness scaling effect. The finding of tailoring interfacial properties with channel thickness represents a useful approach controlling the metal/semiconductor interfaces which may result in conceptually innovative functionalities.

7.
Nano Lett ; 14(9): 5044-51, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25119792

RESUMO

We investigate the organized formation of strain, ripples, and suspended features in macroscopic graphene sheets transferred onto corrugated substrates made of an ordered array of silica pillars with variable geometries. Depending on the pitch and sharpness of the corrugated array, graphene can conformally coat the surface, partially collapse, or lie fully suspended between pillars in a fakir-like fashion over tens of micrometers. With increasing pillar density, ripples in collapsed films display a transition from random oriented pleats emerging from pillars to organized domains of parallel ripples linking pillars, eventually leading to suspended tent-like features. Spatially resolved Raman spectroscopy, atomic force microscopy, and electronic microscopy reveal uniaxial strain domains in the transferred graphene, which are induced and controlled by the geometry. We propose a simple theoretical model to explain the structural transition between fully suspended and collapsed graphene. For the arrays of high density pillars, graphene membranes stay suspended over macroscopic distances with minimal interaction with the pillars' apexes. It offers a platform to tailor stress in graphene layers and opens perspectives for electron transport and nanomechanical applications.

8.
Nanoscale ; 6(13): 7288-94, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24847777

RESUMO

During the chemical vapor deposition (CVD) growth of graphene, graphene domains grown on a Cu surface merge together and form a uniform graphene sheet. For high-performance electronics and other applications, it is important to understand the interfacial structure of the merged domains, as well as their influence on the physical properties of graphene. We synthesized large hexagonal graphene domains with controlled orientations on a heteroepitaxial Cu film and studied the structure and properties of the interfaces between the domains mainly merged with the same angle. Although the merged domains have various interfaces with/without wrinkles and/or increased defect-related Raman D-band intensity, the intra-domain transport showed higher carrier mobility reaching 20,000 cm(2) V(-1) s(-1) on SiO2 at 280 K (the mean value was 7200 cm(2) V(-1) s(-1)) than that measured for inter-domain areas, 6400 cm(2) V(-1) s(-1) (mean value 2000 cm(2) V(-1) s(-1)). The temperature dependence of the mobility suggests that impurity scattering dominates at the interface even for the merged domains with the same orientation. This study highlights the importance of domain interfaces, especially on the carrier transport properties, in CVD-grown graphene.

9.
Nanoscale ; 6(2): 795-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24257682

RESUMO

The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.

10.
Nanoscale ; 5(20): 9572-6, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23986323

RESUMO

We present the temperature-dependent carrier mobility of atomically thin MoS2 field-effect transistors on crystalline hexagonal boron nitride (h-BN) and SiO2 substrates. Our results reveal distinct weak temperature dependence of the MoS2 devices on h-BN substrates. The room temperature mobility enhancement and reduced interface trap density of the single and bilayer MoS2 devices on h-BN substrates further indicate that reducing substrate traps is crucial for enhancing the mobility in atomically thin MoS2 devices.

11.
Nano Lett ; 13(8): 3546-52, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23862641

RESUMO

Two-dimensional semiconductors are structurally ideal channel materials for the ultimate atomic electronics after silicon era. A long-standing puzzle is the low carrier mobility (µ) in them as compared with corresponding bulk structures, which constitutes the main hurdle for realizing high-performance devices. To address this issue, we perform a combined experimental and theoretical study on atomically thin MoS2 field effect transistors with varying the number of MoS2 layers (NLs). Experimentally, an intimate µ-NL relation is observed with a 10-fold degradation in µ for extremely thinned monolayer channels. To accurately describe the carrier scattering process and shed light on the origin of the thinning-induced mobility degradation, a generalized Coulomb scattering model is developed with strictly considering device configurative conditions, that is, asymmetric dielectric environments and lopsided carrier distribution. We reveal that the carrier scattering from interfacial Coulomb impurities (e.g., chemical residues, gaseous adsorbates, and surface dangling bonds) is greatly intensified in extremely thinned channels, resulting from shortened interaction distance between impurities and carriers. Such a pronounced factor may surpass lattice phonons and serve as dominant scatterers. This understanding offers new insight into the thickness induced scattering intensity, highlights the critical role of surface quality in electrical transport, and would lead to rational performance improvement strategies for future atomic electronics.

12.
Nanoscale ; 4(24): 7842-6, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23149422

RESUMO

We propose a novel sloped dielectric geometry in graphene as a band engineering method for widening the depletion region and increasing the electrical rectification effect in graphene pn junctions. Enhanced current-rectification was achieved in a bilayer graphene with a sloped dielectric top gate and a normal back gate. A bias was applied to the top gate to induce a spatially modulated and sloped band configuration, while a back-gate bias was applied to open a bandgap. The sloped band can be tuned to separate n- and p-type regions in the bilayer graphene, depending on a suitable choice of gate voltage. The effective depletion region between the n- and p-type regions can be spatially enlarged due to the proposed top-gate structure. As a result, a strong non-linear electric current was observed during drain bias sweeping, demonstrating the expected rectification behavior with an on/off ratio higher than all previously reported values for graphene pn junctions. The observed rectification was modified to a linear current-voltage relationship by adjusting the biases of both gates to form an nn- or pp-type junction configuration. These results demonstrate that an external voltage can control the current flow in atomic film diodes.

13.
Phys Rev Lett ; 106(15): 150603, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568539

RESUMO

We present the experimental observation of the fluctuation-dissipation theorem violation in an assembly of interacting magnetic nanoparticles in the low temperature superspin-glass phase. The magnetic noise is measured with a two-dimension electron gas Hall probe and compared to the out of phase ac susceptibility of the same ferrofluid. For "intermediate" aging times of the order of 1 h, the ratio of the effective temperature T(eff) to the bath temperature T grows from 1 to 6.5 when T is lowered from T(g) to 0.3 T(g), regardless of the noise frequency. These values are comparable to those measured in an atomic spin glass as well as those calculated for a Heisenberg spin glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...