Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(29): e202303778, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37171043

RESUMO

A 2D-to-2D (2D: two-dimensional) structural transformation accompanying significant bond rearrangement and coordination environment change is demonstrated in a coordination polymer (CP) comprised of copper(II) ions and terephthalate (BDC2- ) ligands for the first time. When immersed in water, a free-standing membrane of 2D Cu(BDC)(DMF) (Cu-1; DMF: N,N-dimethylformamide) transforms into 2D Cu(BDC)(H2 O)2 (Cu-2) while maintaining its highly oriented layered structure. In the 2D sheet, paddlewheel-type CuII dimers coordinated with four bidentate BDC ligands in a square-planar array in Cu-1 were released to form uniform aqua-bridged CuII chains, which are cross-linked with each other by unidentate BDC ligands, in Cu-2. The present facile approach to implement the 2D-to-2D transformation accompanied by bond rearrangement, which is characteristic of CPs, leads to a marked increase in in-plane magnetic susceptibility and proton conductivity. In situ experiments in support of theoretical calculations unveiled the energy diagram that governs the unique structural transformation.

2.
Inorg Chem ; 62(3): 1135-1140, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36632676

RESUMO

Proton-coupled electron transfer (PCET) is a ubiquitous and fundamental process in biochemistry and electrochemistry performed by transition-metal complexes. Most synthetic efforts have been devoted to selecting the components, that is, metal ions and ligands, to control the proton-electron coupling. Here, we show the first example of controlling the proton-electron coupling using the cis-trans metal-ligand isomerization in a π-planar platinum complex, Pt(itsq)2 (itsq1-: o-iminothiosemiquinonate). Both the isomers, which were obtained separately, were characterized by single-crystal X-ray diffraction, and the cis-to-trans isomerization was achieved by immersing in organic solvents. Theoretical calculations predicted that the proton-electron coupling evaluated from the energetic stabilization of the lowest unoccupied molecular orbital by protonation varies greatly depending on the geometrical configuration compared to the metal substitution.

3.
Inorg Chem ; 61(10): 4453-4458, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35234470

RESUMO

We synthesized a molecule-based proton-electron mixed conductor (PEMC), a Pt(III) dithiolate complex with 1,4-naphthoquinone skeletons. The π-planar Pt complex involves a π-stacking column, which is connected by one-dimensional hydrogen bonding chains composed of water molecules. The room-temperature (RT) proton conductivity is 8.0 × 10-5 S cm-1 under ambient conditions, which is >2 orders of magnitude higher than that of the isomorphous Ni complex (7.2 × 10-7 S cm-1). The smaller activation energy (0.23 eV) compared to that of the Ni complex (0.42 eV) possibly originates from the less dense water, which promotes the reorientational dynamics, in the Pt complex with an expanded lattice, namely, negative chemical pressure upon substitution of Ni with the larger Pt. In addition, the Pt complex shows a relatively high RT electronic conductivity of 1.0 × 10-3 S cm-1 caused by the π-columns, approaching an ideal PEMC with comparable proton and electron conduction.

4.
Nat Commun ; 11(1): 843, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071299

RESUMO

Water confined within one-dimensional (1D) hydrophobic nanochannels has attracted significant interest due to its unusual structure and dynamic properties. As a representative system, water-filled carbon nanotubes (CNTs) are generally studied, but direct observation of the crystal structure and proton transport is difficult for CNTs due to their poor crystallinity and high electron conduction. Here, we report the direct observation of a unique water-cluster structure and high proton conduction realized in a metal-organic nanotube, [Pt(dach)(bpy)Br]4(SO4)4·32H2O (dach: (1R, 2R)-(-)-1,2-diaminocyclohexane; bpy: 4,4'-bipyridine). In the crystalline state, a hydrogen-bonded ice nanotube composed of water tetramers and octamers is found within the hydrophobic nanochannel. Single-crystal impedance measurements along the channel direction reveal a high proton conduction of 10-2 Scm-1. Moreover, fast proton diffusion and continuous liquid-to-solid transition are confirmed using solid-state 1H-NMR measurements. Our study provides valuable insight into the structural and dynamical properties of confined water within 1D hydrophobic nanochannels.

5.
Sci Rep ; 9(1): 12707, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481746

RESUMO

Despite the advanced understanding of combustion, the mechanisms of subsequent light emission have not attracted much attention. In this work, we model the light emission as electronic excitation throughout the oxidation reaction. We examined the simple dynamics of the collision of an oxygen molecule (O2) with a kinetic energy of 4, 6, or 10 eV with a stationary target molecule (Mg2, SiH4 or CH4). Time-dependent density functional theory was used to monitor electronic excitation. For a collision between O2 and Mg2, the electronic excitation energy increased with the incident kinetic energy. In contrast, for a collision between O2 and SiH4 molecules, a substantial electronic excitation occurred only at an incident kinetic energy of 10 eV. The electronic excitation was qualitatively reproduced by analysis using complete active space self-consistent field method. On the other hand, collision between O2 and CH4 molecules shows reflection of these molecules indicating that small-mass molecules could show neither oxidation nor subsequent electronic excitation upon collision with an O2 molecule. We believe that this work provides a first step toward understanding the light-emission process during combustion.

6.
Inorg Chem ; 57(21): 13728-13738, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339001

RESUMO

The structural properties of the iron mixed-valence complex ( n-C3H7)4N[FeIIFeIII(dto)3] (dto = dithiooxalato, C2O2S2) have been investigated by single-crystal X-ray diffraction (SCXRD) at low temperatures. ( n-C3H7)4N[FeIIFeIII(dto)3] has two-dimensional (2D) honeycomb layers consisting of alternating FeII and FeIII arrays bonded by bis-bidentate dithiooxalato ligands. Upon cooling, a superlattice structure with q = (1/3, 1/3, 0) was observed below 260 K, which corresponds to an order-disorder transition of the ( n-C3H7)4N+ ions between the honeycomb layers. The charge-transfer phase transition (CTPT) occurs at TC↑1/2 ∼ 120 K and TC↓1/2 ∼ 90 K upon heating and cooling, respectively, with an electron transfer between the FeII and FeIII ions, accompanied by a spin-state change, FeII ( S = 2; HS)-O2C2S2-FeIII ( S = 1/2; LS) ↔ FeIII ( S = 5/2; HS)-O2C2S2-FeII ( S = 0; LS). During the CTPT, the intersheet [FeIIFeIII(dto)3] distance decreased monotonously upon cooling, and an abrupt structural contraction was observed in the hexagonal 2D network. The volume contraction during the CTPT was quite small (∼0.7%), and differences in the structural distortions at the FeS6 and FeO6 sites were not found in the vicinity of the CTPT. We also calculated the orbital energies and the occupied spin states for the [Fe(O2C2S2)3] and [Fe(S2C2O2)3] octahedra in the vicinity of the CTPT by density functional theory (DFT). Because the local symmetry around the two coordinating iron ions is already lowered to trigonal symmetry, the CTPT did not cause any further deformation. This symmetry invariance resulted in an absence of orbital contributions to the total entropy change (Δ S) in the CTPT, which is in agreement with the previous heat capacity measurements. [Nakamoto, T; Miyazaki, Y; Itoi, M; Ono, Y; Kojima, N; Sorai, M. Heat Capacity of the Mixed-Valence Complex {[( n-C3H7)4N][FeIIFeIII(dto)3]}∞, Phase Transition because of Electron Transfer, and a Change in Spin-State of the Whole System. Angew. Chem., Int. Ed. 2001, 40, 4716-4719.].

7.
Sci Rep ; 7: 41264, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120907

RESUMO

The change in electronic structure of extremely small RhxCuy alloy nanoparticles (NPs) with composition variation was investigated by core-level (CL) and valence-band (VB) hard X-ray photoelectron spectroscopy. A combination of CL and VB spectra analyses confirmed that intermetallic charge transfer occurs between Rh and Cu. This is an important compensation mechanism that helps to explain the relationship between the catalytic activity and composition of RhxCuy alloy NPs. For monometallic Rh and Rh-rich alloy (Rh0.77Cu0.23) NPs, the formation of Rh surface oxide with a non-integer oxidation state (Rh(3-δ)+) resulted in high catalytic activity. Conversely, for alloy NPs with comparable Rh:Cu ratio (Rh0.53Cu0.47 and Rh0.50Cu0.50), the decreased fraction of catalytically active Rh(3-δ)+ oxide is compensated by charge transfer from Cu to Rh. As a result, ensuring negligible change in the catalytic activities of the NPs with comparable Rh:Cu ratio to those of Rh-rich and monometallic Rh NPs.

8.
Chemistry ; 23(1): 57-60, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787925

RESUMO

The first synthesis of pure Rh1-x Cux solid-solution nanoparticles is reported. In contrast to the bulk state, the solid-solution phase was stable up to 750 °C. Based on facile density-functional calculations, we made a prediction that the catalytic activity of Rh1-x Cux can be maintained even with 50 at % replacement of Rh with Cu. The prediction was confirmed for the catalytic activities on CO and NOx conversions.

9.
Inorg Chem ; 55(24): 13027-13034, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989166

RESUMO

An electrically conductive D-A-D aggregate composed of a single component was first constructed by use of a protonated bimetal dithiolate (complex 1H2). The crystal structure of complex 1H2 has one-dimensional (1-D) π-stacking columns where the D and A moieties are placed in a segregated-stacking manner. In addition, these segregated-stacking 1-D columns are stabilized by hydrogen bonds. The result of a theoretical band calculation suggests that a conduction pathway forms along these 1-D columns. The transport property of complex 1H2 is semiconducting (Ea = 0.29 eV, ρrt = 9.1 × 104 Ω cm) at ambient pressure; however, the resistivity becomes much lower upon applying high pressure up to 8.8 GPa (Ea = 0.13 eV, ρrt = 6.2 × 10 Ω cm at 8.8 GPa). The pressure dependence of structural and optical changes indicates that the enhancement of conductivity is attributed to not only an increase of π-π overlapping but also a unique pressure-induced intramolecular charge transfer from D to A moieties in this D-A-D aggregate.

10.
Inorg Chem ; 55(2): 546-8, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26704931

RESUMO

On the basis of the results of first-principles band calculations, we report a strategy for the development of a conducting metal-organic framework (MOF). The charge carrier in a zirconium-based MOF, MIL-140A, is expected to be localized because of a mismatch of the energy levels of bridging ligands' π* and Zr 4d orbitals. On the basis of the findings, we propose a candidate structure for a conducting MOF.

11.
J Am Chem Soc ; 137(35): 11498-506, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26302312

RESUMO

Understanding the role that crystal imperfections or defects play on the physical properties of a solid material is important for any application. In this report, the highly unique crystal structure of the metal-organic framework (MOF) zirconium 2-sulfoterephthalate is presented. This MOF contains a large number of partially occupied ligand and metal cluster sites which directly affect the physical properties of the material. The partially occupied ligand positions give rise to a continuum of pore sizes within this highly porous MOF, supported by N2 gas sorption and micropore analysis. Furthermore, this MOF is lined with sulfonic acid groups, implying a high proton concentration in the pore, but defective zirconium clusters are found to be effective proton trapping sites, which was investigated by a combination of AC impedance analysis to measure the proton conductivity and DFT calculations to determine the solvation energies of the protons in the pore. Based on the calculations, methods to control the pKa of the clusters and improve the conductivity by saturating the zirconium clusters with strong acids were utilized, and a 5-fold increase in proton conductivity was achieved using these methods. High proton conductivity of 5.62 × 10(-3) S cm(-1) at 95% relative humidity and 65 °C could be achieved, with little change down to 40% relative humidity at room temperature.

12.
Angew Chem Int Ed Engl ; 54(35): 10169-72, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26179678

RESUMO

Simultaneous manipulation of both spin and charge is a crucial issue in magnetic conductors. We report on a strong correlation between magnetism and conductivity in the iodine-bonded molecular conductor (DIETSe)2 FeBr2 Cl2 [DIETSe=diiodo(ethylenedithio)tetraselenafulvalene], which is the first molecular conductor showing a large hysteresis in both magnetic moment and magnetoresistance associated with a spin-flop transition. Utilizing a mixed-anion approach and iodine bonding interactions, we tailored a molecular conductor with random exchange interactions exhibiting unforeseen physical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...