Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 20(24): 7184-93, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23122937

RESUMO

Five ribofuranosyl pyrimidine nucleosides and their corresponding 1,2,3-triazole derivatives have been synthesized and characterized. Their inhibitory action to Ribonuclease A has been studied by biochemical analysis and X-ray crystallography. These compounds are potent competitive inhibitors of RNase A with low µM inhibition constant (K(i)) values with the ones having a triazolo linker being more potent than the ones without. The most potent of these is 1-[(ß-D-ribofuranosyl)-1,2,3-triazol-4-yl]uracil being with K(i) = 1.6 µM. The high resolution X-ray crystal structures of the RNase A in complex with three most potent inhibitors of these inhibitors have shown that they bind at the enzyme catalytic cleft with the pyrimidine nucleobase at the B(1) subsite while the triazole moiety binds at the main subsite P(1), where P-O5' bond cleavage occurs, and the ribose at the interface between subsites P(1) and P(0) exploiting interactions with residues from both subsites. The effect of a susbsituent group at the 5-pyrimidine position at the inhibitory potency has been also examined and results show that any addition at this position leads to a less efficient inhibitor. Comparative structural analysis of these RNase A complexes with other similar RNase A-ligand complexes reveals that the triazole moiety interactions with the protein form the structural basis of their increased potency. The insertion of a triazole linker between the pyrimidine base and the ribose forms the starting point for further improvement of these inhibitors in the quest for potent ribonucleolytic inhibitors with pharmaceutical potential.


Assuntos
Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacologia , Ribonuclease Pancreático/antagonistas & inibidores , Triazóis/química , Triazóis/farmacologia , Animais , Bovinos , Cristalografia por Raios X , Desenho de Fármacos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Nucleosídeos de Pirimidina/síntese química , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Triazóis/síntese química
2.
ChemMedChem ; 7(4): 722-32, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267166

RESUMO

C5 halogen substituted glucopyranosyl nucleosides (1-(ß-D-glucopyranosyl)-5-X-uracil; X=Cl, Br, I) have been discovered as some of the most potent active site inhibitors of glycogen phosphorylase (GP), with respective K(i) values of 1.02, 3.27, and 1.94 µM. The ability of the halogen atom to form intermolecular electrostatic interactions through the σ-hole phenomenon rather than through steric effects alone forms the structural basis of their improved inhibitory potential relative to the unsubstituted 1-(ß-D-glucopyranosyl)uracil (K(i) =12.39 µM), as revealed by X-ray crystallography and modeling calculations exploiting quantum mechanics methods. Good agreement was obtained between kinetics results and relative binding affinities calculated by QM/MM-PBSA methodology for various substitutions at C5. Ex vivo experiments demonstrated that the most potent derivative (X=Cl) toward purified GP has no cytotoxicity and moderate inhibitory potency at the cellular level. In accordance, ADMET property predictions were performed, and suggest decreased polar surface areas as a potential means of improving activity in the cell.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Nucleosídeos/química , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Halogênios/química , Humanos , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Fosforilase b/antagonistas & inibidores , Eletricidade Estática , Relação Estrutura-Atividade
3.
Virus Genes ; 44(2): 207-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22090198

RESUMO

Echovirus 6 (E6) is one of the main enteroviral serotypes that was isolated from cases of aseptic meningitis and encephalitis during the last years in Greece. Two E6 (LR51A5 and LR61G3) were isolated from the sewage treatment plant unit in Larissa, Greece, in May 2006, 1 year before their characterization from aseptic meningitis cases. The two isolates were initially found to be intra-serotypic recombinants in the genomic region VP1, a finding that initiated a full genome sequence analysis. In the present study, nucleotide, amino acid, and phylogenetic analyses for all genomic regions were conducted. For the detection of recombination events, Simplot and bootscan analyses were carried out. The continuous phylogenetic relationship in 2C-3D genomic region of strains LR51A5 and LR61G3 with E30 isolated in France in 2002-2005 indicated that the two strains were recombinants. SimPlot and Bootscan analyses confirmed that LR51A5 and LR61G3 carry an inter-serotypic recombination in the 2C genomic region. The present study provide evidence that recombination events occurred in the regions VP1 (intraserotypic) and non-capsid (interserotypic) during the evolution of LR51A5 and LR61G3, supporting the statement that the genomes of circulating enteroviruses are a mosaic of genomic regions of viral strains of the same or different serotypes. In conclusion, full genome sequence analysis of circulating enteroviral strains is a prerequisite to understand the complexity of enterovirus evolution.


Assuntos
Echovirus 6 Humano/genética , Echovirus 6 Humano/isolamento & purificação , Genoma Viral , RNA Viral/genética , Esgotos/virologia , Análise por Conglomerados , Echovirus 6 Humano/classificação , Grécia , Humanos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...