Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673151

RESUMO

This work focuses on the comparison of H2 evolution in the hydrolysis of boron-containing hydrides (NaBH4, NH3BH3, and (CH2NH2BH3)2) over the Co metal catalyst and the Co3O4-based catalysts. The Co3O4 catalysts were activated in the reaction medium, and a small amount of CuO was added to activate Co3O4 under the action of weaker reducers (NH3BH3, (CH2NH2BH3)2). The high activity of Co3O4 has been previously associated with its reduced states (nanosized CoBn). The performed DFT modeling shows that activating water on the metal-like surface requires overcoming a higher energy barrier compared to hydride activation. The novelty of this study lies in its focus on understanding the impact of the remaining cobalt oxide phase. The XRD, TPR H2, TEM, Raman, and ATR FTIR confirm the formation of oxygen vacancies in the Co3O4 structure in the reaction medium, which increases the amount of adsorbed water. The kinetic isotopic effect measurements in D2O, as well as DFT modeling, reveal differences in water activation between Co and Co3O4-based catalysts. It can be assumed that the oxide phase serves not only as a precursor and support for the reduced nanosized cobalt active component but also as a key catalyst component that improves water activation.

2.
Materials (Basel) ; 15(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591346

RESUMO

Magnetically recovered Co and Co@Pt catalysts for H2 generation during NaBH4 hydrolysis were successfully synthesized by optimizing the conditions of galvanic replacement method. Commercial aluminum particles with an average size of 80 µm were used as a template for the synthesis of hollow shells of metallic cobalt. Prepared Co0 was also subjected to galvanic replacement reaction to deposit a Pt layer. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, and elemental analysis were used to investigate catalysts at each stage of their synthesis and after catalytic tests. It was established that Co0 hollow microshells show a high hydrogen-generation rate of 1560 mL·min-1·gcat-1 at 40 °C, comparable to that of many magnetic cobalt nanocatalysts. The modification of their surface by platinum (up to 19 at% Pt) linearly increases the catalytic activity up to 5.2 times. The catalysts prepared by the galvanic replacement method are highly stable during cycling. Thus, after recycling and washing off the resulting borate layer, the Co@Pt catalyst with a minimum Pt loading (0.2 at%) exhibits an increase in activity of 34% compared to the initial value. The study shows the activation of the catalyst in the reaction medium with the formation of cobalt-boron-containing active phases.

3.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614426

RESUMO

This work describes the mathematical modeling of the thermal decomposition of the complex compound [Ni(En)3](ClO4)2 (En = C2H8N2 = ethylenediamine) in an inert atmosphere under non-isothermal conditions. This process is characterized by several simultaneous and intense stages: elimination of ethylenediamine from the nickel coordination sphere, decomposition of perchlorate anions, and explosive-like oxidation of free or bound ethylenediamine. These stages overlap and merge into a one step on the differential thermogravimetric curve. Typically, this curve is modeled as a one-stage process during kinetic analysis. In this paper, for the first time, the data from the dynamic mass-spectral thermal analysis and thermogravimetric analysis were modeled using the hybrid genetic algorithm, and the results were compared. A two-stage scheme of [Ni(En)3](ClO4)2 thermolysis was proposed and the kinetic parameters for each stage were obtained. It was shown that the decomposition of [Ni(En)3](ClO4)2 begins with the elimination of one molecule of ethylenediamine (stage A), then the perchlorate anions quickly decompose with the evolution of oxygen (stage B). We believe that the resulting ClO4-x- (x = 1-3), as stronger oxidizing agents, instantly start an explosive-like exothermic process of ethylenediamine oxidation (stage B).

4.
Nanomaterials (Basel) ; 11(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947681

RESUMO

In this work two approaches to the synthesis of energetic complex compound Ni(Im)6(NO3)2 from imidazole and nicklel (II) nitrate were applied: a traditional synthesis from solution and a solvent-free melting-assisted method. According to infrared spectroscopy, X-ray diffraction, elemental and thermal analysis data, it was shown that the solvent-free melt synthesis is a faster, simpler and environmentally friendly method of Ni(Im)6(NO3)2 preparation. The results show that this compound is a promising precursor for the production of nanocrystalline Ni-NiO materials by air-assisted combustion method. The combustion of this complex together with inorganic supports makes it possible to synthesize supported nickel catalysts for different catalytic processes.

5.
Materials (Basel) ; 14(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34576646

RESUMO

The paper presents a comparative study of the activity of magnetite (Fe3O4) and copper and cobalt ferrites with the structure of a cubic spinel synthesized by combustion of glycine-nitrate precursors in the reactions of ammonia borane (NH3BH3) hydrolysis and hydrothermolysis. It was shown that the use of copper ferrite in the studied reactions of NH3BH3 dehydrogenation has the advantages of a high catalytic activity and the absence of an induction period in the H2 generation curve due to the activating action of copper on the reduction of iron. Two methods have been proposed to improve catalytic activity of Fe3O4-based systems: (1) replacement of a portion of Fe2+ cations in the spinel by active cations including Cu2+ and (2) preparation of highly dispersed multiphase oxide systems, involving oxide of copper.

6.
Materials (Basel) ; 13(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187295

RESUMO

The effect of different regimes of combustion of glycine-nitrate precursors on the formation of perovskite phases (LaMnO3 and LaCrO3) without additional heat treatment was studied. The following three combustion regimes were compared: the traditional solution combustion synthesis (SCS), volume combustion synthesis (VCS) using a powdered precursor, and self-propagating high-temperature synthesis (SHS) using a precursor pellet. The products of combustion were studied using a series of physicochemical methods (attenuated total reflection infrared spectroscopy (ATR FTIR), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and thermal analysis). SHS was found to be the most productive regime for the formation of perovskite because of its ability to develop high temperatures in the reaction zone, which led to a reduced content of the thermally stable lanthanum carbonate impurities and to an increased yield and crystallite size of the perovskite phase. The reasons for the better crystallinity and purity of LaCrO3 as compared with LaMnO3 is also discussed, namely the low temperatures of the onset of the thermolysis, the fast rate of combustion, and the favorable thermodynamics for the achievement of high temperatures in the reaction zone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...