Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649185

RESUMO

Cell-to-cell communication via tunneling nanotubes (TNTs) is a challenging topic with a growing interest. In this work, we proposed several innovative tools that use red/near-infrared dye labeling and employ lifetime-based imaging strategies to investigate the dynamics of TNTs in a living mesothelial H28 cell line that exhibits spontaneously TNT1 and TNT2 subtypes. Thanks to a fluorescence lifetime imaging microscopy module being integrated into confocal microscopy and stimulated emission depletion nanoscopy, we applied lifetime imaging, lifetime dye unmixing, and lifetime denoising techniques to perform multiplexing experiments and time-lapses of tens of minutes, revealing therefore structural and functional characteristics of living TNTs that were preserved from light exposure. In these conditions, vesicle-like structures, and tubular- and round-shaped mitochondria were identified within living TNT1. In addition, mitochondrial dynamic studies revealed linear and stepwise mitochondrial migrations, bidirectional movements, transient backtracking, and fission events in TNT1. Transfer of Nile Red-positive puncta via both TNT1 and TNT2 was also detected between living H28 cells.


Assuntos
Estruturas da Membrana Celular , Microscopia Confocal , Mitocôndrias , Nanotubos , Nanotubos/química , Humanos , Microscopia Confocal/métodos , Mitocôndrias/metabolismo , Linhagem Celular , Comunicação Celular , Microscopia de Fluorescência/métodos , Dinâmica Mitocondrial
2.
Free Radic Biol Med ; 178: 125-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871763

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, with poor prognosis and no cure. Substantial evidence implicates inflammation and associated oxidative stress as a potential mechanism for ALS, especially in patients carrying the SOD1 mutation and, therefore, lacking anti-oxidant defense. The brain is particularly vulnerable to oxidation due to the abundance of polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), which can give rise to several oxidized metabolites. Accumulation of a DHA peroxidation product, CarboxyEthylPyrrole (CEP) is dependent on activated inflammatory cells and myeloperoxidase (MPO), and thus marks areas of inflammation-associated oxidative stress. At the same time, generation of an alternative inactive DHA peroxidation product, ethylpyrrole, does not require cell activation and MPO activity. While absent in normal brain tissues, CEP is accumulated in the central nervous system (CNS) of ALS patients, reaching particularly high levels in individuals carrying a SOD1 mutation. ALS brains are characterized by high levels of MPO and lowered anti-oxidant activity (due to the SOD1 mutation), thereby aiding CEP generation and accumulation. Due to DHA oxidation within the membranes, CEP marks cells with the highest oxidative damage. In all ALS cases CEP is present in nearly all astrocytes and microglia, however, only in individuals carrying a SOD1 mutation CEP marks >90% of neurons, thereby emphasizing an importance of CEP accumulation as a potential hallmark of oxidative damage in neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Humanos , Inflamação/genética , Camundongos , Camundongos Transgênicos , Mutação , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
3.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681761

RESUMO

Fluorescence microscopy is essential for a detailed understanding of cellular processes; however, live-cell preservation during imaging is a matter of debate. In this study, we proposed a guide to optimize advanced light microscopy approaches by reducing light exposure through fluorescence lifetime (τ) exploitation of red/near-infrared dyes. Firstly, we characterized key instrumental elements which revealed that red/near-infrared laser lines with an 86x (Numerical Aperture (NA) = 1.2, water immersion) objective allowed high transmission of fluorescence signals, low irradiance and super-resolution. As a combination of two technologies, i.e., vacuum tubes (e.g., photomultiplier) and semiconductor microelectronics (e.g., avalanche photodiode), type S, X and R of hybrid detectors (HyD-S, HyD-X and HyD-R) were particularly adapted for red/near-infrared photon counting and τ separation. Secondly, we tested and compared lifetime-based imaging including coarse τ separation for confocal microscopy, fitting and phasor plot analysis for fluorescence lifetime microscopy (FLIM), and lifetimes weighting for enhanced stimulated emission depletion (STED) nanoscopy, in light of red/near-infrared multiplexing. Mainly, we showed that the choice of appropriate imaging approach may depend on fluorochrome number, together with their spectral/lifetime characteristics and STED compatibility. Photon-counting mode and sensitivity of HyDs together with phasor plot analysis of fluorescence lifetimes enabled the flexible and fast imaging of multi-labeled living H28 cells. Therefore, a combination of red/near-infrared dyes labeling with lifetime-based strategies offers new perspectives for live-cell imaging by enhancing sample preservation through acquisition time and light exposure reduction.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Linhagem Celular Tumoral , Desenho de Equipamento , Fluoresceína/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Microscopia Confocal/instrumentação , Fótons , Rodaminas/química
4.
J Neurosci ; 41(42): 8725-8741, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34462307

RESUMO

Galanin, one of the most inducible neuropeptides, is widely present in developing brains, and its expression is altered by pathologic events (e.g., epilepsy, ischemia, and axotomy). The roles of galanin in brain development under both normal and pathologic conditions have been hypothesized, but the question of how galanin is involved in fetal and early postnatal brain development remains largely unanswered. In this study, using granule cell migration in the cerebellum of early postnatal mice (both sexes) as a model system, we examined the role of galanin in neuronal cell migration during normal development and after brain injury. Here we show that, during normal development, endogenous galanin participates in accelerating granule cell migration via altering the Ca2+ and cAMP signaling pathways. Upon brain injury induced by the application of cold insults, galanin levels decrease at the lesion sites, but increase in the surroundings of lesion sites. Granule cells exhibit the following corresponding changes in migration: (1) slowing down migration at the lesion sites; and (2) accelerating migration in the surroundings of lesion sites. Experimental manipulations of galanin signaling reduce the lesion site-specific changes in granule cell migration, indicating that galanin plays a role in such deficits in neuronal cell migration. The present study suggests that manipulating galanin signaling may be a potential therapeutic target for acutely injured brains during development.SIGNIFICANCE STATEMENT Deficits in neuronal cell migration caused by brain injury result in abnormal development of cortical layers, but the underlying mechanisms remain to be determined. Here, we report that on brain injury, endogenous levels of galanin, a neuropeptide, are altered in a lesion site-specific manner, decreasing at the lesion sites but increasing in the surroundings of lesion sites. The changes in galanin levels positively correlate with the migration rate of immature neurons. Manipulations of galanin signaling ameliorate the effects of injury on neuronal migration and cortical layer development. These results shed a light on galanin as a potential therapeutic target for acutely injured brains during development.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Movimento Celular/fisiologia , Cerebelo/metabolismo , Galanina/metabolismo , Animais , Animais Recém-Nascidos , Lesões Encefálicas/patologia , Células Cultivadas , Cerebelo/lesões , Cerebelo/patologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos
5.
Biomed Res Int ; 2020: 2701345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351987

RESUMO

By allowing insured communication between cancer cells themselves and with the neighboring stromal cells, tunneling nanotubes (TNTs) are involved in the multistep process of cancer development from tumorigenesis to the treatment resistance. However, despite their critical role in the biology of cancer, the study of the TNTs has been announced challenging due to not only the absence of a specific biomarker but also the fragile and transitory nature of their structure and the fact that they are hovering freely above the substratum. Here, we proposed to review guidelines to follow for studying the structure and functionality of TNTs in tumoral neuroendocrine cells (PC12) and nontumorigenic human bronchial epithelial cells (HBEC-3, H28). In particular, we reported how crucial is it (i) to consider the culture conditions (culture surface, cell density), (ii) to visualize the formation of TNTs in living cells (mechanisms of formation, 3D representation), and (iii) to identify the cytoskeleton components and the associated elements (categories, origin, tip, and formation/transport) in the TNTs. We also focused on the input of high-resolution cell imaging approaches including Stimulated Emission Depletion (STED) nanoscopy, Transmitted and Scanning Electron Microscopies (TEM and SEM). In addition, we underlined the important role of the organelles in the mechanisms of TNT formation and transfer between the cancer cells. Finally, new biological models for the identification of the TNTs between cancer cells and stromal cells (liquid air interface, ex vivo, in vivo) and the clinical considerations will also be discussed.


Assuntos
Comunicação Celular , Tomografia com Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Microtúbulos , Neoplasias , Animais , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Neoplasias/metabolismo , Neoplasias/ultraestrutura , Células PC12 , Ratos
6.
Brain Sci ; 7(6)2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587295

RESUMO

Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders.

7.
J Neurosci ; 35(34): 12018-32, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311781

RESUMO

In previous studies, stimulation of ionotropic AMPA/kainate glutamate receptors on cultured oligodendrocyte cells induced the formation of a signaling complex that includes the AMPA receptor, integrins, calcium-binding proteins, and, surprisingly, the myelin proteolipid protein (PLP). AMPA stimulation of cultured oligodendrocyte progenitor cells (OPCs) also caused an increase in OPC migration. The current studies focused primarily on the formation of the PLP-αv integrin-AMPA receptor complex in vivo and whether complex formation impacts OPC migration in the brain. We found that in wild-type cerebellum, PLP associates with αv integrin and the calcium-impermeable GluR2 subunit of the AMPA receptor, but in mice lacking PLP, αv integrin did not associate with GluR2. Live imaging studies of OPC migration in ex vivo cerebellar slices demonstrated altered OPC migratory responses to neurotransmitter stimulation in the absence of PLP and GluR2 or when αv integrin levels were reduced. Chemotaxis assays of purified OPCs revealed that AMPA stimulation was neither attractive nor repulsive but clearly increased the migration rate of wild-type but not PLP null OPCs. AMPA receptor stimulation of wild-type OPCs caused decreased cell-surface expression of the GluR2 AMPA receptor subunit and increased intracellular Ca(2+) signaling, whereas PLP null OPCs did not reduce GluR2 at the cell surface or increase Ca(2+) signaling in response to AMPA treatment. Together, these studies demonstrate that PLP is critical for OPC responses to glutamate signaling and has important implications for OPC responses when levels of glutamate are high in the extracellular space, such as following demyelination. SIGNIFICANCE STATEMENT: After demyelination, such as occurs in multiple sclerosis, remyelination of axons is often incomplete, leading to loss of neuronal function and clinical disability. Remyelination may fail because oligodendrocyte precursor cells (OPCs) do not completely migrate into demyelinated areas or OPCs in lesions may not mature into myelinating oligodendrocytes. We have found that the myelin proteolipid protein is critical to regulating OPC migratory responses to the neurotransmitter glutamate through modulation of cell-surface expression of the calcium-impermeable GluR2 subunit of the AMPA glutamate receptor and increased intercellular Ca(2+) signaling. Altered glutamate homeostasis has been reported in demyelinated lesions. Therefore, understanding how OPCs respond to glutamate has important implications for treatment after white matter injury and disease.


Assuntos
Movimento Celular/fisiologia , Integrina alfaV/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Oligodendroglia/metabolismo , Receptores de AMPA/biossíntese , Células-Tronco/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Cerebelo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ligação Proteica/fisiologia , Receptores de AMPA/metabolismo
8.
J Vis Exp ; (99): e52810, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25992599

RESUMO

During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration.


Assuntos
Movimento Celular/fisiologia , Cerebelo/citologia , Microscopia Confocal/métodos , Animais , Córtex Cerebelar/citologia , Grânulos Citoplasmáticos , Feminino , Interneurônios/citologia , Masculino , Tecido Nervoso/citologia , Neurônios/fisiologia , Ratos , Ratos Wistar
9.
Acta Neuropathol ; 129(1): 81-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25322817

RESUMO

Capsaicin, an agonist of transient receptor potential vanilloid receptor 1, induces axonal degeneration of peripheral sensory nerves and is commonly used to treat painful sensory neuropathies. In this study, we investigated the role of mitochondrial dynamics in capsaicin-induced axonal degeneration. In capsaicin-treated rodent sensory axons, axonal swellings, decreased mitochondrial stationary site length and reduced mitochondrial transport preceded axonal degeneration. Increased axoplasmic Ca(2+) mediated the alterations in mitochondrial length and transport. While sustaining mitochondrial transport did not reduce axonal swellings in capsaicin-treated axons, preventing mitochondrial fission by overexpression of mutant dynamin-related protein 1 increased mitochondrial length, retained mitochondrial membrane potentials and reduced axonal loss upon capsaicin treatment. These results establish that mitochondrial stationary site size significantly affects axonal integrity and suggest that inhibition of Ca(2+)-dependent mitochondrial fission facilitates mitochondrial function and axonal survival following activation of axonal cationic channels.


Assuntos
Axônios/efeitos dos fármacos , Capsaicina/toxicidade , Dinâmica Mitocondrial/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Animais , Axônios/patologia , Axônios/fisiologia , Cálcio/metabolismo , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Gânglios Espinais/fisiologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/fisiologia , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Ratos Sprague-Dawley , Canais de Cátion TRPV/metabolismo
10.
Dev Neurobiol ; 75(4): 369-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25066767

RESUMO

In the developing brain, immature neurons migrate from their sites of origin to their final destination, where they reside for the rest of their lives. This active movement of immature neurons is essential for the formation of normal neuronal cytoarchitecture and proper differentiation. Deficits in migration result in the abnormal development of the brain, leading to a variety of neurological disorders. A myriad of extracellular guidance molecules and intracellular effector molecules is involved in controlling the migration of immature neurons in a cell type, cortical layer and birth-date-specific manner. To date, little is known about how extracellular guidance molecules transfer their information to the intracellular effector molecules, which regulate the migration of immature neurons. In this article, to fill the gap between extracellular guidance molecules and intracellular effector molecules, using the migration of cerebellar granule cells as a model system of neuronal cell migration, we explore the role of second messenger signaling (specifically Ca(2+) and cyclic nucleotide signaling) in the regulation of neuronal cell migration. We will, first, describe the cortical layer-specific changes in granule cell migration. Second, we will discuss the roles of Ca(2+) and cyclic nucleotide signaling in controlling granule cell migration. Third, we will present recent studies showing the roles of Ca(2+) and cyclic nucleotide signaling in the deficits in granule cell migration in mouse models of fetal alcohol spectrum disorders and fetal Minamata disease.


Assuntos
Cálcio/metabolismo , Cerebelo/citologia , Neurônios/fisiologia , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais/fisiologia , Animais , Movimento Celular , Humanos , Camundongos , Modelos Animais , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia
11.
Proc Natl Acad Sci U S A ; 111(27): 9953-8, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958879

RESUMO

Axonal degeneration is a primary cause of permanent neurological disability in individuals with the CNS demyelinating disease multiple sclerosis. Dysfunction of axonal mitochondria and imbalanced energy demand and supply are implicated in degeneration of chronically demyelinated axons. The purpose of this study was to define the roles of mitochondrial volume and distribution in axonal degeneration following acute CNS demyelination. We show that the axonal mitochondrial volume increase following acute demyelination of WT CNS axons does not occur in demyelinated axons deficient in syntaphilin, an axonal molecule that immobilizes stationary mitochondria to microtubules. These findings were supported by time-lapse imaging of WT and syntaphilin-deficient axons in vitro. When demyelinated, axons deficient in syntaphilin degenerate at a significantly greater rate than WT axons, and this degeneration can be rescued by reducing axonal electrical activity with the Na(+) channel blocker flecainide. These results support the concept that syntaphilin-mediated immobilization of mitochondria to microtubules is required for the volume increase of axonal mitochondria following acute demyelination and protects against axonal degeneration in the CNS.


Assuntos
Axônios , Mitocôndrias/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Feminino , Humanos , Proteínas de Membrana , Esclerose Múltipla/genética , Imagem com Lapso de Tempo
12.
J Neurochem ; 130(2): 241-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24646324

RESUMO

During early post-natal development of the cerebellum, granule neurons (GN) execute a centripetal migration toward the internal granular layer, whereas basket and stellate cells (B/SC) migrate centrifugally to reach their final position in the molecular layer (ML). We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates in vitro the expression and release of the serine protease tissue-type plasminogen activator (tPA) from GN, but the coordinated role of PACAP and tPA during interneuron migration has not yet been investigated. Here, we show that endogenous PACAP is responsible for the transient arrest phase of GN at the level of the Purkinje cell layer (PCL) but has no effect on B/SC. tPA is devoid of direct effect on GN motility in vitro, although it is widely distributed along interneuron migratory routes in the ML, PCL, and internal granular layer. Interestingly, plasminogen activator inhibitor 1 reduces the migration speed of GN in the ML and PCL, and that of B/SC in the ML. Taken together, these results reveal for the first time that tPA facilitates the migration of both GN and fast B/SC at the level of their intersection in the ML through degradation of the extracellular matrix. Crucial role of tissue plasminogen activator (tPA) in interneuron migration. Interneuron migration is a critical step for normal establishment of neuronal network. This study indicates that, in the post-natal cerebellum, tPA facilitates the opposite migration of immature excitatory granule neurons (GN) and immature inhibitory basket/stellate cells (B/SC) along the same migratory route. These data show that tPA exerts a pivotal role in neurodevelopment.


Assuntos
Córtex Cerebelar/efeitos dos fármacos , Córtex Cerebelar/crescimento & desenvolvimento , Cerebelo/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Interneurônios/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Córtex Cerebelar/citologia , Cerebelo/citologia , Grânulos Citoplasmáticos/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Técnicas de Cultura de Órgãos , Plasminogênio/farmacologia , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Ratos , Ratos Wistar , Ativador de Plasminogênio Tecidual/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(13): 5057-62, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22411806

RESUMO

In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca(2+) spikes through alterations in Ca(2+), cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca(2+) spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca(2+) spike frequency by stimulating internal Ca(2+) release and Ca(2+) influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca(2+) spike frequency and Ca(2+), cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Movimento Celular , Doenças Fetais/patologia , Intoxicação do Sistema Nervoso por Mercúrio/patologia , Neurônios/metabolismo , Neurônios/patologia , Adenina/farmacologia , Animais , Animais Recém-Nascidos , Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Cerebelo/embriologia , Cerebelo/patologia , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Modelos Animais de Doenças , Feminino , Doenças Fetais/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Intoxicação do Sistema Nervoso por Mercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Camundongos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tionucleotídeos/farmacologia
14.
Proc Natl Acad Sci U S A ; 109(7): 2630-5, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308338

RESUMO

The role of genetic inheritance in brain development has been well characterized, but little is known about the contributions of natural environmental stimuli, such as the effect of light-dark cycles, to brain development. In this study, we determined the role of light stimuli in neuronal cell migration to elucidate how environmental factors regulate brain development. We show that in early postnatal mouse cerebella, granule cell migration accelerates during light cycles and decelerates during dark cycles. Furthermore, cerebellar levels of insulin-like growth factor 1 (IGF-1) are high during light cycles and low during dark cycles. There are causal relationships between light-dark cycles, speed of granule cell migration, and cerebellar IGF-1 levels. First, changes in light-dark cycles result in corresponding changes in the fluctuations of both speed of granule cell migration and cerebellar IGF-1 levels. Second, in vitro studies indicate that exogenous IGF-1 accelerates the migration of isolated granule cells through the activation of IGF-1 receptors. Third, in vivo studies reveal that inhibiting the IGF-1 receptors decelerates granule cell migration during light cycles (high IGF-1 levels) but does not alter migration during dark cycles (low IGF-1 levels). In contrast, stimulating the IGF-1 receptors accelerates granule cell migration during dark cycles (low IGF-1 levels) but does not alter migration during light cycles (high IGF-1 levels). These results suggest that during early postnatal development light stimuli control granule cell migration by altering the activity of IGF-1 receptors through modification of cerebellar IGF-1 levels.


Assuntos
Movimento Celular , Luz , Neurônios/citologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Animais , Camundongos , Neurônios/metabolismo
15.
J Neurochem ; 119(5): 920-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21919910

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) and tissue plasminogen activator (tPA) play important roles in neuronal migration and survival. However, a direct link between the neurotrophic effects of PACAP and tPA has never been investigated. In this study, we show that, in PC12 cells, PACAP induced a 9.85-fold increase in tPA gene expression through activation of the protein kinase A- and protein kinase C-dependent signaling pathways. In immature cerebellar granule neurons (CGN), PACAP stimulated tPA mRNA expression and release of proteolytically active tPA. Immunocytochemical labeling revealed the presence of tPA in the cytoplasm and processes of cultured CGN. The inhibitory effect of PACAP on CGN motility was not affected by the tPA substrate plasminogen or the tPA inhibitor plasminogen activator inhibitor-1. In contrast, plasminogen activator inhibitor-1 significantly reduced the stimulatory effect of PACAP on CGN survival. Altogether, these data indicate that tPA gene expression is activated by PACAP in both tumoral and normal neuronal cells. The present study also demonstrates that PACAP stimulates the release of tPA which promotes CGN survival by a mechanism dependent of its proteolytic activity.


Assuntos
Cerebelo/citologia , Neurônios/citologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ativador de Plasminogênio Tecidual/fisiologia , Animais , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Cerebelo/fisiologia , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Células PC12 , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo
16.
J Neurosci ; 31(20): 7249-58, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21593309

RESUMO

Energy production presents a formidable challenge to axons as their mitochondria are synthesized and degraded in neuronal cell bodies. To meet the energy demands of nerve conduction, small mitochondria are transported to and enriched at mitochondrial stationary sites located throughout the axon. In this study, we investigated whether size and motility of mitochondria in small myelinated CNS axons are differentially regulated at nodes, and whether mitochondrial distribution and motility are modulated by axonal electrical activity. The size/volume of mitochondrial stationary sites was significantly larger in juxtaparanodal/internodal axoplasm than in nodal/paranodal axoplasm. With three-dimensional electron microscopy, we observed that axonal mitochondrial stationary sites were composed of multiple mitochondria of varying length, except at nodes where mitochondria were uniformly short and frequently absent altogether. Mitochondrial transport speed was significantly reduced in nodal axoplasm compared with internodal axoplasm. Increased axonal electrical activity decreased mitochondrial transport and increased the size of mitochondrial stationary sites in nodal/paranodal axoplasm. Decreased axonal electrical activity had the opposite effect. In cerebellar axons of the myelin-deficient rat, which contain voltage-gated Na(+) channel clusters but lack paranodal specializations, axonal mitochondrial motility and stationary site size were similar at Na(+) channel clusters and other axonal regions. These results demonstrate juxtaparanodal/internodal enrichment of stationary mitochondria and neuronal activity-dependent dynamic modulation of mitochondrial distribution and transport in nodal axoplasm. In addition, the modulation of mitochondrial distribution and motility requires oligodendrocyte-axon interactions at paranodal specializations.


Assuntos
Axônios/fisiologia , Movimento Celular/fisiologia , Mitocôndrias/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Nós Neurofibrosos/fisiologia , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Sistema Nervoso Central/fisiologia , Sistema Nervoso Central/ultraestrutura , Cerebelo/fisiologia , Cerebelo/ultraestrutura , Metabolismo Energético/fisiologia , Células HEK293 , Humanos , Masculino , Mitocôndrias/ultraestrutura , Bainha de Mielina/fisiologia , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/ultraestrutura , Técnicas de Cultura de Órgãos , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Sprague-Dawley
17.
J Neurosci ; 30(19): 6658-66, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20463228

RESUMO

Axonal degeneration contributes to permanent neurological disability in inherited and acquired diseases of myelin. Mitochondrial dysfunction has been proposed as a major contributor to this axonal degeneration. It remains to be determined, however, if myelination, demyelination, or remyelination alter the size and distribution of axonal mitochondrial stationary sites or the rates of axonal mitochondrial transport. Using live myelinated rat dorsal root ganglion (DRG) cultures, we investigated whether myelination and lysolecithin-induced demyelination affect axonal mitochondria. Myelination increased the size of axonal stationary mitochondrial sites by 2.3-fold. After demyelination, the size of axonal stationary mitochondrial sites was increased by an additional 2.2-fold and the transport velocity of motile mitochondria was increased by 47%. These measures returned to the levels of myelinated axons after remyelination. Demyelination induced activating transcription factor 3 (ATF3) in DRG neurons. Knockdown of neuronal ATF3 by short hairpin RNA abolished the demyelination-induced increase in axonal mitochondrial transport and increased nitrotyrosine immunoreactivity in axonal mitochondria, suggesting that neuronal ATF3 expression and increased mitochondrial transport protect demyelinated axons from oxidative damage. In response to insufficient ATP production, demyelinated axons increase the size of stationary mitochondrial sites and thereby balance ATP production with the increased energy needs of nerve conduction.


Assuntos
Transporte Axonal/fisiologia , Axônios/fisiologia , Doenças Desmielinizantes/fisiopatologia , Gânglios Espinais/fisiopatologia , Mitocôndrias/fisiologia , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Axônios/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Gânglios Espinais/patologia , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Técnicas In Vitro , Lisofosfatidilcolinas , Microscopia Eletrônica , Mitocôndrias/patologia , Bainha de Mielina/fisiologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Células de Schwann/fisiologia , Tirosina/análogos & derivados , Tirosina/metabolismo
19.
Dev Biol ; 332(2): 309-24, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19500566

RESUMO

In the adult cerebellum, basket/stellate cells are scattered throughout the ML, but little is known about the process underlying the cell dispersion. To determine the allocation of stellate/basket cells within the ML, we examined their migration in the early postnatal mouse cerebellum. We found that after entering the ML, basket/stellate cells sequentially exhibit four distinct phases of migration. First, the cells migrated radially from the bottom to the top while exhibiting saltatory movement with a single leading process (Phase I). Second, the cells turned at the top and migrated tangentially in a rostro-caudal direction, with an occasional reversal of the direction of migration (Phase II). Third, the cells turned and migrated radially within the ML at a significantly reduced speed while repeatedly extending and withdrawing the leading processes (Phase III). Fourth, the cells turned at the middle and migrated tangentially at their slowest speed, while extending several dendrite-like processes after having completely withdrawn the leading process (Phase IV). Finally, the cells stopped and completed their migration. These results suggest that the dispersion of basket/stellate cells in the ML is controlled by the orchestrated activity of external guidance cues, cell-cell contact and intrinsic programs in a position- and time-dependent manner.


Assuntos
Movimento Celular/fisiologia , Cerebelo , Neurônios , Animais , Animais Recém-Nascidos , Células Cultivadas , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Humanos , Camundongos , Neurônios/citologia , Neurônios/fisiologia
20.
Dev Biol ; 326(1): 237-49, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19063877

RESUMO

External guidance cues play a role in controlling neuronal cell turning in the developing brain, but little is known about whether intrinsic programs are also involved in controlling the turning. In this study, we examined whether granule cells undergo autonomous changes in the direction of migration in the microexplant cultures of the early postnatal mouse cerebellum. We found that granule cells exhibit spontaneous and periodical turning without cell-cell contact and in the absence of external guidance cues. The frequency of turning was increased by stimulating the Ca(2+) influx and the internal Ca(2+) release, or inhibiting the cAMP signaling pathway, while the frequency was reduced by inhibiting the Ca(2+) influx. Granule cell turning in vitro was classified into four distinct modes, which were characterized by the morphological changes in the leading process and the trailing process, such as bifurcating, turning, withdrawing, and changing the polarity. The occurrence of the 1st and 2nd modes of turning was differentially affected by altering the Ca(2+) and cAMP signaling pathways. Collectively, the results demonstrate that intrinsic programs regulate the autonomous turning of cerebellar granule cells in vitro. Furthermore, the results suggest that extrinsic signals play a role as essential modulators of intrinsic programs.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Cerebelo/citologia , Neurônios/citologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Células Cultivadas , Cerebelo/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Feminino , Masculino , Camundongos , Neurônios/fisiologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...