Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513419

RESUMO

Recycling waste from the production and consumption of heat-resistant alloys to return them to production is an urgent task due to the high cost of the components contained in these alloys. The kinetics and conditions of the acid leaching process of the grinding waste of a heat-resistant nickel alloy are studied depending on the composition of the acid solution (H2SO4, HCl, HNO3, and their mixtures) at room temperature to boiling point temperature and various acid concentrations (1.5 to 3.0 mol/L), ratios of waste to solution (1:10 to 3:10), fraction sizes (0.04-1 mm), and contact duration (1 to 120 h). The linearization of experimental data by the Gray-Weddington, Gistling-Brownstein, and Kazeev-Erofeev equations showed that the rate of the leaching process was influenced by both the chemical reactions between sulfuric acid and metals included in the grinding waste and the diffusion of reagents through the film of reaction products and undissolved impurities. Optimal conditions for acid dissolution of the grinding waste have been established to obtain the maximum degree of extraction of the main component of the alloy, nickel. The processing of powder particles with a size of less than 0.1 mm should be carried out in a solution of sulfuric acid with a concentration of 3.0 mol/L at a temperature of 100 °C for 6 h with a ratio of solid to liquid phases of 1:10. The reported results are very important for industry personnel to recover metals and for environmentalists to treat the alloy waste.

3.
RSC Adv ; 11(39): 24013-24021, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479050

RESUMO

The strategy for the synthesis of substituted [(3-nitro-1H-1,2,4-triazol-1-yl)-NNO-azoxy]furazans 4-7, in which the distal nitrogen of the azoxy group is bonded to the nitrogen atom of the azole ring, includes, firstly, the reaction of 1-amino-3-nitro-1H-1,2,4-triazole with 2,2,2-trifluoro-N-(4-nitrosofurazan-3-yl)acetamide in the presence of dibromisocyanuric acid followed by removing of the trifluoroacetyl protecting group to afford aminofurazan (4). Transformation of the amino group in the latter made it possible to synthesize the corresponding nitro (5), azo (6), and methylene dinitramine (7) substituted furazans. The compounds synthesized are thermally stable (decomposition onset temperatures 147-228 °C), exhibit acceptable densities (1.77-1.80 g cm-3) and optimal oxygen balance (the oxidizer excess coefficients α = 0.42-0.71). Their standard enthalpies of formation (576-747 kcal kg-1) were determined experimentally by combustion calorimetry and these compounds have been estimated as potential components of solid composite propellants. In terms of the specific impulse level, model solid composite propellant formulations based on nitro and methylene dinitramine substituted furazans 5 and 7 outperform similar formulations based on CL-20 by 1-4 s, and formulations based on HMX and RDX by 5-8 s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...