Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Physiol Biophys ; 42(1): 59-66, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36705305

RESUMO

Amyloid-ß peptide interactions with model lipid membranes have been studied by means of small angle neutron scattering and molecular dynamics simulations. These interactions had been indicated recently as an origin of the membrane structure reorganizations between spherical small unilamellar vesicles and planar bicelle-like structures. In present work, we investigate the influence of charge on the peptide-triggered morphological changes by introducing the anionic lipid DMPS to the underlying DMPC membrane. Changes to the membrane thickness and the overall membrane structure with and without Aß25-35 incorporated have been investigated over a wide range of temperatures. Our results document the previously reported morphological reformations between bicelle-like structures present in gel phase and small unilamellar vesicles present in fluid phase to be independent from the charge existence in the system.


Assuntos
Simulação de Dinâmica Molecular , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Lipídeos/química , Bicamadas Lipídicas/química
2.
Sci Rep ; 11(1): 21990, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754013

RESUMO

The amyloid-beta peptide (Aß) is considered a key factor in Alzheimer's disease (AD) ever since the discovery of the disease. The understanding of its damaging influence has however shifted recently from large fibrils observed in the inter-cellular environment to the small oligomers interacting with a cell membrane. We studied the effect of temperature on the latter interactions by evaluating the structural characteristics of zwitterionic phosphatidylcholine (PC) membranes with incorporated Aß25-35 peptide. By means of small angle neutron scattering (SANS), we have observed for the first time a spontaneous reformation of extruded unilamellar vesicles (EULVs) to discoidal bicelle-like structures (BLSs) and small unilamellar vesicles (SULVs). These changes in the membrane self-organization happen during the thermodynamic phase transitions of lipids and only in the presence of the peptide. We interpret the dramatic changes in the membrane's overall shape with parallel changes in its thickness as the Aß25-35 triggered membrane damage and a consequent reorganization of its structure. The suggested process is consistent with an action of separate peptides or small size peptide oligomers rather than the result of large Aß fibrils.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Lipídeos de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Temperatura , Bicamadas Lipídicas/metabolismo , Nêutrons , Espalhamento a Baixo Ângulo , Termodinâmica
3.
Eur Biophys J ; 50(7): 1025-1035, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34357445

RESUMO

The effect of melatonin and/or cholesterol on the structural properties of a model lipid bilayer prepared from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) has been investigated both experimentally and via molecular dynamics (MD) simulations. Neutron reflectometry experiments performed with single supported membranes revealed changes in lipid bilayer thickness upon the introduction of additional components. While the presence of cholesterol led to an increase in membrane thickness, the opposite effect was observed in the case of melatonin. The results obtained are in a good agreement with MD simulations which provided further information on the organization of components within the systems examined, indicating a mechanism underlying the membranes' thickness changes due to cholesterol and melatonin that had been observed experimentally. Cholesterol and melatonin preferentially accumulate in different membrane regions, presumably affecting the conformation of lipid hydrophobic moieties differently, and in turn having distinct impacts on the structure of the entire membrane. Our findings may be relevant for understanding the effects of age-related changes in cholesterol and melatonin concentrations, including those in the brains of individuals with Alzheimer's disease.


Assuntos
Melatonina , Colesterol , Humanos , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Fosfatidilcolinas
4.
Biochim Biophys Acta Biomembr ; 1863(9): 183651, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023300

RESUMO

We have studied the impact of cholesterol and/or melatonin on the static and dynamical properties of bilayers made of DPPC or DOPC utilizing neutron scattering techniques, Raman spectroscopy and molecular dynamics simulations. While differing in the amplitude of the effect due to cholesterol or melatonin when comparing their interactions with the two lipids, their addition ensued recognizable changes to both types of bilayers. As expected, based on the two-component systems of lipid/cholesterol or lipid/melatonin studied previously, we show the impact of cholesterol and melatonin being opposite and competitive in the case of three-component systems of lipid/cholesterol/melatonin. The effect of cholesterol appears to prevail over that of melatonin in the case of structural properties of DPPC-based bilayers, which can be explained by its interactions targeting primarily the saturated lipid chains. The dynamics of hydrocarbon chains represented by the ratio of trans/gauche conformers reveals the competitive effect of cholesterol and melatonin being somewhat more balanced. The additive yet opposing effects of cholesterol and melatonin have been observed also in the case of structural properties of DOPC-based bilayers. We report that cholesterol induced an increase in bilayer thickness, while melatonin induced a decrease in bilayer thickness in the three-component systems of DOPC/cholesterol/melatonin. Commensurately, by evaluating the projected area of DOPC, we demonstrate a lipid area decrease with an increasing concentration of cholesterol, and a lipid area increase with an increasing concentration of melatonin. The demonstrated condensing effect of cholesterol and the fluidizing effect of melatonin appear in an additive manner upon their mutual presence.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Colesterol/química , Melatonina/química , Fosfatidilcolinas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Simulação de Dinâmica Molecular , Difração de Nêutrons , Espalhamento a Baixo Ângulo
5.
Gen Physiol Biophys ; 39(2): 135-144, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32329441

RESUMO

The structure and dynamics of membranes depend on many external and internal factors that in turn determine their biological functions. One of the widely accepted and studied characteristics of biomembranes is their fluidity. We research a simple system with variable fluidity tweakable via its composition. The addition of cholesterol is employed to increase the order of lipid chains, thus decreasing the membrane fluidity, while melatonin is shown to elevate the chain disorder, thus also the membrane fluidity. We utilize the densitometric measurements to show a shift of studied systems closer or further from the gel-to-fluid phase transition. The structural changes represented by changes to membrane thickness are evaluated from small angle neutron scattering. Finally, we look at the ability of the two additives to control the interactions between membrane and amyloid-beta peptides. Our results suggest that fluidizing effect of melatonin can promote an insertion of peptide within the membrane interior. Intriguingly, the latter structure relates possibly to an Alzheimer's disease preventing mechanism postulated in the case of melatonin.


Assuntos
Colesterol/química , Melatonina/química , Fluidez de Membrana , Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Conformação Molecular , Fosfatidilcolinas/química
6.
Molecules ; 22(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182554

RESUMO

We investigate the structural changes to lipid membrane that ensue from the addition of aliphatic alcohols with various alkyl tail lengths. Small angle neutron diffraction from flat lipid bilayers that are hydrated through water vapor has been employed to eliminate possible artefacts of the membrane curvature and the alcohol's membrane-water partitioning. We have observed clear changes to membrane structure in both transversal and lateral directions. Most importantly, our results suggest the alteration of the membrane-water interface. The water encroachment has shifted in the way that alcohol loaded bilayers absorbed more water molecules when compared to the neat lipid bilayers. The experimental results have been corroborated by molecular dynamics simulations to reveal further details. Namely, the order parameter profiles have been fruitful in correlating the mechanical model of structural changes to the effect of anesthesia.


Assuntos
Álcoois/química , Bicamadas Lipídicas/química , Algoritmos , Lipídeos/química , Modelos Químicos , Conformação Molecular , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...