Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
1.
Bioresour Technol ; : 130927, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830477

RESUMO

2-Phenylethanol, known for its rose-like odor and antibacterial activity, is synthesized via exogenous phenylpyruvate by the sequential reaction of phenylpyruvate decarboxylase (PDC) and aldehyde reductase. We first targeted ARO10, a phenylpyruvate decarboxylase gene from Saccharomyces cerevisiae, and identified a suitable aldehyde reductase gene. Co-expression of ARO10 and yahK in E. coli transformants yielded 1.1 g/L of 2-phenylethanol in batch culture. We hypothesized that there might be a bottleneck in PDC activity. The computer-based enzyme evolution was utilized to enhance production. The introduction of an amino acid substitution in ARO10 (ARO10 I544W) stabilized the aromatic ring of the phenylpyruvate substrate, increasing 2-phenylethanol yield 4.1-fold compared to wild-type ARO10. Cultivation of ARO10 I544W-expressing E. coli produced 2.5 g/L of 2-phenylethanol with a yield from glucose of 0.16 g/g after 72 h. This approach represents a significant advancement, achieving the highest yield of 2-phenylethanol from glucose using microbes to date.

2.
Microb Cell Fact ; 23(1): 178, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879464

RESUMO

BACKGROUND: Computational mining of useful enzymes and biosynthesis pathways is a powerful strategy for metabolic engineering. Through systematic exploration of all conceivable combinations of enzyme reactions, including both known compounds and those inferred from the chemical structures of established reactions, we can uncover previously undiscovered enzymatic processes. The application of the novel alternative pathways enables us to improve microbial bioproduction by bypassing or reinforcing metabolic bottlenecks. Benzylisoquinoline alkaloids (BIAs) are a diverse group of plant-derived compounds with important pharmaceutical properties. BIA biosynthesis has developed into a prime example of metabolic engineering and microbial bioproduction. The early bottleneck of BIA production in Escherichia coli consists of 3,4-dihydroxyphenylacetaldehyde (DHPAA) production and conversion to tetrahydropapaveroline (THP). Previous studies have selected monoamine oxidase (MAO) and DHPAA synthase (DHPAAS) to produce DHPAA from dopamine and oxygen; however, both of these enzymes produce toxic hydrogen peroxide as a byproduct. RESULTS: In the current study, in silico pathway design is applied to relieve the bottleneck of DHPAA production in the synthetic BIA pathway. Specifically, the cytochrome P450 enzyme, tyrosine N-monooxygenase (CYP79), is identified to bypass the established MAO- and DHPAAS-mediated pathways in an alternative arylacetaldoxime route to DHPAA with a peroxide-independent mechanism. The application of this pathway is proposed to result in less formation of toxic byproducts, leading to improved production of reticuline (up to 60 mg/L at the flask scale) when compared with that from the conventional MAO pathway. CONCLUSIONS: This study showed improved reticuline production using the bypass pathway predicted by the M-path computational platform. Reticuline production in E. coli exceeded that of the conventional MAO-mediated pathway. The study provides a clear example of the integration of pathway mining and enzyme design in creating artificial metabolic pathways and suggests further potential applications of this strategy in metabolic engineering.


Assuntos
Benzilisoquinolinas , Escherichia coli , Engenharia Metabólica , Engenharia Metabólica/métodos , Benzilisoquinolinas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Vias Biossintéticas , Simulação por Computador , Tetra-Hidropapaverolina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados
3.
J Biosci Bioeng ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777650

RESUMO

Only a few reports available about the assimilation of hydrophobic or oil-based feedstock as carbon sources by Lipomyces starkeyi. In this study, the ability of L. starkeyi to efficiently utilize free fatty acids (FFAs) and real biomass like palm acid oil (PAO) as well as crude palm kernel oil (CPKO) for growth and lipid production was investigated. PAO, CPKO, and FFAs were evaluated as sole carbon sources or in the mixed medium containing glucose. L. starkeyi was able to grow on the medium supplemented with PAO and FFAs, which contained long-chain length FAs and accumulated lipids up to 35% (w/w) of its dry cell weight. The highest lipid content and lipid concentration were achieved at 50% (w/w) and 10.1 g/L, respectively, when L. starkeyi was cultured in nitrogen-limited mineral medium (-NMM) supplemented with PAO emulsion. Hydrophobic substrate like PAO could be served as promising carbon source for L. starkeyi.

4.
World J Gastroenterol ; 30(18): 2402-2417, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764770

RESUMO

Viral hepatitis represents a major danger to public health, and is a globally leading cause of death. The five liver-specific viruses: Hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus, and hepatitis E virus, each have their own unique epidemiology, structural biology, transmission, endemic patterns, risk of liver complications, and response to antiviral therapies. There remain few options for treatment, in spite of the increasing prevalence of viral-hepatitis-caused liver disease. Furthermore, chronic viral hepatitis is a leading worldwide cause of both liver-related morbidity and mortality, even though effective treatments are available that could reduce or prevent most patients' complications. In 2016, the World Health Organization released its plan to eliminate viral hepatitis as a public health threat by the year 2030, along with a discussion of current gaps and prospects for both regional and global eradication of viral hepatitis. Today, treatment is sufficiently able to prevent the disease from reaching advanced phases. However, future therapies must be extremely safe, and should ideally limit the period of treatment necessary. A better understanding of pathogenesis will prove beneficial in the development of potential treatment strategies targeting infections by viral hepatitis. This review aims to summarize the current state of knowledge on each type of viral hepatitis, together with major innovations.


Assuntos
Antivirais , Hepatite Viral Humana , Humanos , Antivirais/uso terapêutico , Hepatite Viral Humana/epidemiologia , Hepatite Viral Humana/virologia , Hepatite Viral Humana/terapia , Hepatite Viral Humana/diagnóstico , Vírus de Hepatite/patogenicidade , Vírus de Hepatite/efeitos dos fármacos , Vírus de Hepatite/genética , Prevalência , Fígado/virologia , Fígado/patologia
5.
Appl Microbiol Biotechnol ; 108(1): 352, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819468

RESUMO

Fucoxanthin is a versatile substance in the food and pharmaceutical industries owing to its excellent antioxidant and anti-obesity properties. Several microalgae, including the haptophyte Pavlova spp., can produce fucoxanthin and are potential industrial fucoxanthin producers, as they lack rigid cell walls, which facilitates fucoxanthin extraction. However, the commercial application of Pavlova spp. is limited owing to insufficient biomass production. In this study, we aimed to develop a mixotrophic cultivation method to increase biomass and fucoxanthin production in Pavlova gyrans OPMS 30543X. The effects of culturing OPMS 30543X with different organic carbon sources, glycerol concentrations, mixed-nutrient conditions, and light intensities on the consumption of organic carbon sources, biomass production, and fucoxanthin accumulation were analyzed. Several organic carbon sources, such as glycerol, glucose, sucrose, and acetate, were examined, revealing that glycerol was well-consumed by the microalgae. Biomass and fucoxanthin production by OPMS 30543X increased in the presence of 10 mM glycerol compared to that observed without glycerol. Metabolomic analysis revealed higher levels of the metabolites related to the glycolytic, Calvin-Benson-Bassham, and tricarboxylic acid cycles under mixotrophic conditions than under autotrophic conditions. Cultures grown under mixotrophic conditions with a light intensity of 100 µmol photons m-2 s-1 produced more fucoxanthin than autotrophic cultures. Notably, the amount of fucoxanthin produced (18.9 mg/L) was the highest reported thus far for Pavlova species. In conclusion, the use of mixotrophic culture is a promising strategy for increasing fucoxanthin production in Pavlova species. KEY POINTS: • Glycerol enhances biomass and fucoxanthin production in Pavlova gyrans • Metabolite levels increase under mixotrophic conditions • Mixotrophic conditions and medium-light intensity are appropriate for P. gyrans.


Assuntos
Biomassa , Glicerol , Haptófitas , Xantofilas , Xantofilas/metabolismo , Glicerol/metabolismo , Haptófitas/metabolismo , Haptófitas/crescimento & desenvolvimento , Haptófitas/efeitos da radiação , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Meios de Cultura/química , Carbono/metabolismo , Luz , Metabolômica
6.
Microb Cell Fact ; 23(1): 104, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594681

RESUMO

BACKGROUND: Single-cell droplet microfluidics is an important platform for high-throughput analyses and screening because it provides an independent and compartmentalized microenvironment for reaction or cultivation by coencapsulating individual cells with various molecules in monodisperse microdroplets. In combination with microbial biosensors, this technology becomes a potent tool for the screening of mutant strains. In this study, we demonstrated that a genetically engineered yeast strain that can fluorescently sense agonist ligands via the heterologous expression of a human G-protein-coupled receptor (GPCR) and concurrently secrete candidate peptides is highly compatible with single-cell droplet microfluidic technology for the high-throughput screening of new agonistically active peptides. RESULTS: The water-in-oil microdroplets were generated using a flow-focusing microfluidic chip to encapsulate engineered yeast cells coexpressing a human GPCR [i.e., angiotensin II receptor type 1 (AGTR1)] and a secretory agonistic peptide [i.e., angiotensin II (Ang II)]. The single yeast cells cultured in the droplets were then observed under a microscope and analyzed using image processing incorporating machine learning techniques. The AGTR1-mediated signal transduction elicited by the self-secreted Ang II peptide was successfully detected via the expression of a fluorescent reporter in single-cell yeast droplet cultures. The system could also distinguish Ang II analog peptides with different agonistic activities. Notably, we further demonstrated that the microenvironment of the single-cell droplet culture enabled the detection of rarely existing positive (Ang II-secreting) yeast cells in the model mixed cell library, whereas the conventional batch-culture environment using a shake flask failed to do so. Thus, our approach provided compartmentalized microculture environments, which can prevent the diffusion, dilution, and cross-contamination of peptides secreted from individual single yeast cells for the easy identification of GPCR agonists. CONCLUSIONS: We established a droplet-based microfluidic platform that integrated an engineered yeast biosensor strain that concurrently expressed GPCR and self-secreted the agonistic peptides. This offers individually isolated microenvironments that allow the culture of single yeast cells secreting these peptides and gaging their signaling activities, for the high-throughput screening of agonistic peptides. Our platform base on yeast GPCR biosensors and droplet microfluidics will be widely applicable to metabolic engineering, environmental engineering, and drug discovery.


Assuntos
Microfluídica , Saccharomyces cerevisiae , Humanos , Microfluídica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ensaios de Triagem em Larga Escala
7.
Environ Microbiol Rep ; 16(2): e13243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425145

RESUMO

We developed a simulation model of human oral microbiota using Bio Palette oral medium (BPOM) containing 0.02% glucose and lower bacterial nitrogen sources, derived from saliva and dental plaque. By decreasing the concentration of Gifu anaerobic medium (GAM) from 30 to 10 g L-1 , we observed increased ratios of target pathogenic genera, Porphyromonas and Fusobacterium from 0.5% and 1.7% to 1.2% and 3.5%, respectively, in the biofilm on hydroxyapatite (HA) discs. BPOM exhibited the higher ratios of Porphyromonas and Fusobacterium, and amplicon sequence variant number on HA, compared with GAM, modified GAM and basal medium mucin. Mixing glycerol stocks of BPOM culture solutions from four human subjects resulted in comparable ratios of these bacteria to the original saliva. In this simulation model, sitafloxacin showed higher inhibitory effects on P. gingivalis than minocycline hydrochloride at a low dosage of 0.1 µg mL-1 . Probiotics such as Streptococcus salivarius and Limosilactobacillus fermentum also showed significant decreases in Porphyromonas and Fusobacterium ratios on HA, respectively. Overall, the study suggests that BPOM with low carbon and nutrients could be a versatile platform for assessing the efficacy of antibiotics and live biotherapeutics in treating oral diseases caused by Porphyromonas and Fusobacterium.


Assuntos
Fusobacterium nucleatum , Microbiota , Humanos , Porphyromonas gingivalis/genética , Saliva/microbiologia , Biofilmes
8.
Epilepsy Behav ; 153: 109687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368791

RESUMO

OBJECTIVE: We investigated neuropsychological outcome in patients with pharmacoresistant pediatric-onset epilepsy caused by focal cortical dysplasia (FCD), who underwent frontal lobe resection during adolescence and young adulthood. METHODS: Twenty-seven patients were studied, comprising 15 patients who underwent language-dominant side resection (LDR) and 12 patients who had languagenondominant side resection (n-LDR). We evaluated intelligence (language function, arithmetic ability, working memory, processing speed, visuo-spatial reasoning), executive function, and memory in these patients before and two years after resection surgery. We analyzed the relationship between neuropsychological outcome and resected regions (side of language dominance and location). RESULTS: Although 75% of the patients showed improvement or no change in individual neuropsychological tests after surgical intervention, 25% showed decline. The cognitive tests that showed improvement or decline varied between LDR and n-LDR. In patients who had LDR, decline was observed in Vocabulary and Phonemic Fluency (both 5/15 patients), especially after resection of ventrolateral frontal cortex, and improvement was observed in WCST-Category (7/14 patients), Block Design (6/15 patients), Digit Symbol (4/15 patients), and Delayed Recall (3/9 patients). In patients who underwent n-LDR, improvement was observed in Vocabulary (3/12 patients), but decline was observed in Block Design (2/9 patients), and WCST-Category (2/9 patients) after resection of dorsolateral frontal cortex; and Arithmetic (3/10 patients) declined after resection of dorsolateral frontal cortex or ventrolateral frontal cortex. General Memory (3/8 patients), Visual Memory (3/8 patients), Delayed Recall (3/8 patients), Verbal Memory (2/9 patients), and Digit Symbol (3/12 patients) also declined after n-LDR. CONCLUSION: Postoperative changes in cognitive function varied depending on the location and side of the resection. For precise presurgical prediction of neuropsychological outcome after surgery, further prospective studies are needed to accumulate data of cognitive changes in relation to the resection site.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Displasia Cortical Focal , Criança , Humanos , Adolescente , Adulto Jovem , Adulto , Resultado do Tratamento , Epilepsia/etiologia , Epilepsia/cirurgia , Epilepsia/psicologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/cirurgia , Memória de Curto Prazo , Testes Neuropsicológicos , Epilepsia do Lobo Temporal/cirurgia , Estudos Retrospectivos
9.
Commun Biol ; 7(1): 233, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409320

RESUMO

Glycogen serves as a metabolic sink in cyanobacteria. Glycogen deficiency causes the extracellular release of distinctive metabolites such as pyruvate and 2-oxoglutarate upon nitrogen depletion; however, the mechanism has not been fully elucidated. This study aimed to elucidate the mechanism of carbon partitioning in glycogen-deficient cyanobacteria. Extracellular and intracellular metabolites in a glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 were comprehensively analyzed. In the presence of a nitrogen source, the ΔglgC mutant released extracellular glutamate rather than pyruvate and 2-oxoglutarate, whereas its intracellular glutamate level was lower than that in the wild-type strain. The de novo synthesis of glutamate increased in the ΔglgC mutant, suggesting that glycogen deficiency enhanced carbon partitioning into glutamate and extracellular excretion through an unidentified transport system. This study proposes a model in which glutamate serves as the prime extracellular metabolic sink alternative to glycogen when nitrogen is available.


Assuntos
Carbono , Glicogênio , Carbono/metabolismo , Glicogênio/metabolismo , Fotossíntese , Ácido Glutâmico/metabolismo , Ácidos Cetoglutáricos/metabolismo , Nitrogênio/metabolismo , Piruvatos
10.
Sci Rep ; 14(1): 4269, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383855

RESUMO

The role of the amygdala in unconscious emotional processing remains a topic of debate. Past lesion studies have indicated that amygdala damage leads to impaired electrodermal activity in response to subliminally presented emotional stimuli. However, electrodermal activity can reflect both emotional and nonemotional processes. To provide behavioral evidence highlighting the critical role of the amygdala in unconscious emotional processing, we examined patients (n = 16) who had undergone unilateral resection of medial temporal lobe structures, including the amygdala. We utilized the subliminal affective priming paradigm in conjunction with unilateral visual presentation. Fearful or happy dynamic facial expressions were presented in unilateral visual fields for 30 ms, serving as negative or positive primes. Subsequently, neutral target faces were displayed, and participants were tasked with rating the valence of these targets. Positive primes, compared to negative ones, enhanced valence ratings of the target to a greater extent when they stimulated the intact hemisphere (i.e., were presented in the contralateral visual field of the intact hemisphere) than when they stimulated the resected hemisphere (i.e., were presented in the contralateral visual field of the resected hemisphere). These results suggest that the amygdala is causally involved in unconscious emotional processing.


Assuntos
Emoções , Medo , Humanos , Emoções/fisiologia , Medo/fisiologia , Lobo Temporal/cirurgia , Tonsila do Cerebelo/fisiologia , Campos Visuais , Inconsciência , Expressão Facial , Imageamento por Ressonância Magnética
11.
Appl Microbiol Biotechnol ; 108(1): 110, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229297

RESUMO

Terpenoids are widely used in the food, beverage, cosmetics, and pharmaceutical industries. Microorganisms have been extensively studied for terpenoid production. In yeast, the introduction of the mevalonate (MVA) pathway in organelles in addition to the augmentation of its own MVA pathway have been challenging. Introduction of the MVA pathway into mitochondria is considered a promising approach for terpenoid production because acetyl-CoA, the starting molecule of the MVA pathway, is abundant in mitochondria. However, mitochondria comprise only a small percentage of the entire cell. Therefore, we hypothesized that increasing the total mitochondrial volume per cell would increase terpenoid production. First, we ascertained that the amounts of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the final molecules of the MVA pathway, were 15-fold higher of the strain expressing the MVA pathway in mitochondria than in the wild-type yeast strain. Second, we found that different deletion mutants induced different mitochondrial volumes by measuring the mitochondrial volume in various deletion mutants affecting mitochondrial morphology; for example,Δmdm32 increased mitochondrial volume, and Δfzo1 decreased it. Finally, the effects of mitochondrial volume on amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) were investigated using mutants harboring large or small mitochondria expressing the MVA pathway in mitochondria. Amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) increased when the mitochondrial volume expanded. Introducing the MVA pathway into mitochondria for terpenoid production in yeast may become more attractive by enlarging the mitochondrial volume. KEY POINTS: • IPP/DMAPP content increased in the strain expressing the MVA pathway in mitochondria • IPP/DMAPP and terpenoid contents are positively correlated with mitochondrial volume • Enlarging the mitochondria may improve mitochondria-mediated terpenoid production.


Assuntos
Compostos Organofosforados , Terpenos , beta Caroteno , Terpenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esqualeno , Hemiterpenos/metabolismo , Mitocôndrias/metabolismo , Ácido Mevalônico/metabolismo
12.
BioTech (Basel) ; 13(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38247732

RESUMO

Styrene is an important industrial chemical. Although several studies have reported microbial styrene production, the amount of styrene produced in batch cultures can be increased. In this study, styrene was produced using genetically engineered Escherichia coli. First, we evaluated five types of phenylalanine ammonia lyases (PALs) from Arabidopsis thaliana (AtPAL) and Brachypodium distachyon (BdPAL) for their ability to produce trans-cinnamic acid (Cin), a styrene precursor. AtPAL2-expressing E. coli produced approximately 700 mg/L of Cin and we found that BdPALs could convert Cin into styrene. To assess styrene production, we constructed an E. coli strain that co-expressed AtPAL2 and ferulic acid decarboxylase from Saccharomyces cerevisiae. After a biphasic culture with oleyl alcohol, styrene production and yield from glucose were 3.1 g/L and 26.7% (mol/mol), respectively, which, to the best of our knowledge, are the highest values obtained in batch cultivation. Thus, this strain can be applied to the large-scale industrial production of styrene.

13.
Yeast ; 41(4): 192-206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38081785

RESUMO

While flocculation has demonstrated its efficacy in enhancing yeast robustness and ethanol production, its potential application for lactic acid fermentation remains largely unexplored. Our study examined the differences between flocculating and nonflocculating Saccharomyces cerevisiae strains in terms of their metabolic dynamics when incorporating an exogenous lactic acid pathway, across varying cell densities and in the presence of lignocellulose-derived byproducts. Comparative gene expression profiles revealed that cultivating a nonflocculant strain at higher cell density yielded a substantial upregulation of genes associated with glycolysis, energy metabolism, and other key pathways, resulting in elevated levels of fermentation products. Meanwhile, the flocculating strain displayed an inherent ability to sustain high glycolytic activity regardless of the cell density. Moreover, our investigation revealed a significant reduction in glycolytic activity under chemical stress, potentially attributable to diminished ATP supply during the energy investment phase. Conversely, the formation of flocs in the flocculating strain conferred protection against toxic chemicals present in the medium, fostering more stable lactic acid production levels. Additionally, the distinct flocculation traits observed between the two examined strains may be attributed to variations in the nucleotide sequences of the flocculin genes and their regulators. This study uncovers the potential of flocculation for enhanced lactic acid production in yeast, offering insights into metabolic mechanisms and potential gene targets for strain improvement.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fermentação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Glicólise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Floculação
14.
J Biosci Bioeng ; 137(1): 16-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042754

RESUMO

Terpenoids are used in various industries, and Saccharomyces cerevisiae is a promising microorganism for terpenoid production. Introducing the mevalonate (MVA) pathway into the mitochondria of a strain with an augmented inherent cytosolic MVA pathway increased terpenoid production but also led to the accumulation of toxic pyrophosphate intermediates that negatively affected terpenoid production. We first engineered the inherent MVA pathway in the cytosol and then introduced the MVA pathway into the mitochondria using several promoter combinations, considering the toxicity of pyrophosphate intermediates. However, the highest titer, 183 mg/L, tends to be only 5% higher than that of the strain that only augmented the inherent MVA pathway (SYCM1; 174 mg/L). Next, we hypothesized that, in addition to the toxicity of pyrophosphate, other compounds in the MVA pathway could affect the squalene titer. Thus, we constructed a combinatorial strain library expressing MVA pathway enzymes in the mitochondria with various promoter combinations. The highest squalene titer (230 mg/L) was 32% higher than that of SYCM1. The promoter set revealed that mitigation of mono- and pyrophosphate compound accumulation was important for mitochondrial usage. This study demonstrated that a combinatorial strain library is useful for discovering the optimal gene expression balance in engineering yeast.


Assuntos
Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/metabolismo , Ácido Mevalônico/metabolismo , Difosfatos , Esqualeno/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Engenharia Metabólica
15.
J Biosci Bioeng ; 137(1): 9-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968228

RESUMO

Geotrichum candidum is a dimorphic yeast used in cheese processing. To our knowledge, no major metabolites have been identified to date in G. candidum except for some amino acid and fatty acid metabolites. This has limited research on the commercial use of G. candidum. In this study, we aimed to analyze temporal changes in the intra- and extra-cellular metabolites of G. candidum and Saccharomyces cerevisiae cultured in YM medium as reference. As a result of metabolite analysis, it was observed that G. candidum tends to accumulate pentose phosphate pathway compounds, which are involved in nucleic acid synthesis, after 48 h of cultivation when compared to S. cerevisiae. In addition, G. candidum accumulated higher amounts of the antioxidant glutathione in the medium than did S. cerevisiae. In addition, G. candidum accumulated large amounts of B vitamins such as pantothenic acid and nicotinic acid in the medium. Finally, we examined the potential of G. candidum as a host for the production of useful compounds such as pantothenic acid. When cultured in medium supplemented with the pantothenic acid precursor ß-alanine, G. candidum produced 12-fold higher amounts of pantothenic acid (30 µM) than that by S. cerevisiae. This study indicates that G. candidum accumulates various useful compounds that are dissimilar to those produced by S. cerevisiae. Furthermore, G. candidum has the potential to produce useful chemicals under appropriate culture conditions.


Assuntos
Queijo , Saccharomyces cerevisiae , Ácido Pantotênico , Aminoácidos
16.
Bioresour Technol ; 393: 130144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042432

RESUMO

This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.


Assuntos
Glicerol , Fenol , Saccharomycetales , Fermentação , Glicerol/metabolismo , Fenol/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Metanol/metabolismo
17.
Curr Opin Biotechnol ; 85: 103057, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154323

RESUMO

Microbial biomanufacturing offers a promising, environment-friendly platform for next-generation chemical production. However, its limited industrial implementation is attributed to the slow production rates of target compounds and the time-intensive engineering of high-yield strains. This review highlights how metabolomics expedites bioproduction development, as demonstrated through case studies of its integration into microbial strain engineering, culture optimization, and model construction. The Design-Build-Test-Learn (DBTL) cycle serves as a standard workflow for strain engineering. Process development, including the optimization of culture conditions and scale-up, is crucial for industrial production. In silico models facilitate the development of strains and processes. Metabolomics is a powerful driver of the DBTL framework, process development, and model construction.


Assuntos
Engenharia Metabólica , Metabolômica , Simulação por Computador
18.
Int J Biol Macromol ; 258(Pt 2): 129041, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154715

RESUMO

Chromatin remodelers are important in maintaining the dynamic chromatin state in eukaryotic cells, which is essential for epigenetic regulation. Among the remodelers, the multi-subunits complex INO80 plays crucial roles in transcriptional regulation. However, current knowledge of chromatin regulation of the core subunit Ino80 on stress adaptation remains mysterious. Here we revealed that overexpressing the chromatin remodeler Ino80 elevated tolerance to multiple stresses in budding yeast Saccharomyces cerevisiae. Analyses of differential chromatin accessibility and global transcription levels revealed an enrichment of genes involved in NCR (nitrogen catabolite repression) under acetic acid stress. We demonstrated that Ino80 overexpression reduced the histone H3 occupancy in the promoter region of the glutamate dehydrogenase gene GDH2 and the allantoinase gene DAL1. Consistently, the decreased occupancy of nucleosome was revealed in the Ino80-inactivation mutant. Further analyses showed that Ino80 was recruited to the specific DNA locus in the promoter region of GDH2. Consistently, Ino80 overexpression facilitated the utilization of non-preferred nitrogen source to enhance ethanol yield under prolonged acetic acid stress. These results demonstrate that Ino80 plays a crucial role in coordinating carbon and nitrogen metabolism during stress adaptation.


Assuntos
Repressão Catabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Epigênese Genética , Nucleossomos , Acetatos/metabolismo
19.
Commun Biol ; 6(1): 1285, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145988

RESUMO

The cyanobacterium Synechococcus elongatus PCC 7942 accumulates alarmone guanosine tetraphosphate (ppGpp) under stress conditions, such as darkness. A previous study observed that artificial ppGpp accumulation under photosynthetic conditions led to the downregulation of genes involved in the nitrogen assimilation system, which is activated by the global nitrogen regulator NtcA, suggesting that ppGpp regulates NtcA activity. However, the details of this mechanism have not been elucidated. Here, we investigate the metabolic responses associated with ppGpp accumulation by heterologous expression of the ppGpp synthetase RelQ. The pool size of 2-oxoglutarate (2-OG), which activates NtcA, is significantly decreased upon ppGpp accumulation. De novo 13C-labeled CO2 assimilation into the Calvin-Benson-Bassham cycle and glycolytic intermediates continues irrespective of ppGpp accumulation, whereas the labeling of 2-OG is significantly decreased under ppGpp accumulation. The low 2-OG levels in the RelQ overexpression cells could be because of the inhibition of metabolic enzymes, including aconitase, which are responsible for 2-OG biosynthesis. We propose a metabolic rearrangement by ppGpp accumulation, which negatively regulates 2-OG levels to maintain carbon and nitrogen balance.


Assuntos
Guanosina Tetrafosfato , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/metabolismo , Nitrogênio/metabolismo , Regulon , Homeostase
20.
Sci Rep ; 13(1): 20007, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973873

RESUMO

A typical ground investigation for characterizing geotechnical properties of soil requires sampling soils to test in a laboratory. Laboratory X-ray computed tomography (CT) has been used to non-destructively observe soils and characterize their properties using image processing, numerical analysis, or three-dimensional (3D) printing techniques based on scanned images; however, if it becomes possible to scan the soils in the ground, it may enable the characterization without sampling them. In this study, an in-situ X-ray CT scanning system comprising a drilling machine with an integrated CT scanner was developed. A model test was conducted on gravel soil to verify if the equipment can drill and scan the soil underground. Moreover, image processing was performed on acquired 3D CT images to verify the image quality; the particle morphology (particle size and shape characteristics) was compared with the results obtained for projected particles captured in a two-dimensional (2D) manner by a digital camera. The equipment successfully drilled to a target depth of 800 mm, and the soil was scanned at depths of 700, 750, and 800 mm. Image processing results showed a reasonable agreement between the 3D and 2D particle morphology images, and confirmed the feasibility of the in-situ X-ray CT scanning system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...