Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37317151

RESUMO

Eukaryotic photosynthetic organisms synthesize triacylglycerols, which are crucial physiologically as major carbon and energy storage compounds and commercially as food oils and raw materials for carbon-neutral biofuel production. TLC analysis has revealed triacylglycerols are present in several cyanobacteria. However, mass spectrometric analysis has shown that freshwater cyanobacterium, Synechocystis sp. PCC 6803, contains plastoquinone-B and acyl plastoquinol with triacylglycerol-like TLC mobility, concomitantly with the absence of triacylglycerol. Synechocystis contains slr2103, which is responsible for the bifunctional synthesis of plastoquinone-B and acyl plastoquinol and also for NaCl-stress acclimatizing cell growth. However, information is limited on the taxonomical distribution of these plastoquinone lipids, and their synthesis genes and physiological roles in cyanobacteria. In this study, a euryhaline cyanobacterium, Synechococcus sp. PCC 7002, shows the same plastoquinone lipids as those in Synechocystis, although the levels are much lower than in Synechocystis, triacylglycerol being absent. Furthermore, through an analysis of a disruptant to the homolog of slr2103 in Synechococcus, it is found that the slr2103 homolog in Synechococcus, similar to slr2103 in Synechocystis, contributes bifunctionally to the synthesis of plastoquinone-B and acyl plastoquinol; however, the extent of the contribution of the homolog gene to NaCl acclimatization is smaller than that of slr2103 in Synechocystis. These observations suggest strain- or ecoregion-dependent development of the physiological roles of plastoquinone lipids in cyanobacteria and show the necessity to re-evaluate previously identified cyanobacterial triacylglycerol through TLC analysis with mass spectrometric techniques.

2.
Front Plant Sci ; 14: 1181180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180399

RESUMO

A cyanobacterium, Synechocystis sp. PCC 6803, contains a lipid with triacylglycerol-like TLC mobility but its identity and physiological roles remain unknown. Here, on ESI-positive LC-MS2 analysis, it is shown that the triacylglycerol-like lipid (lipid X) is related to plastoquinone and can be grouped into two subclasses, Xa and Xb, the latter of which is esterified by 16:0 and 18:0. This study further shows that a Synechocystis homolog of type-2 diacylglycerol acyltransferase genes, slr2103, is essential for lipid X synthesis: lipid X disappears in a Synechocystis slr2103-disruptant whereas it appears in an slr2103-overexpressing transformant (OE) of Synechococcus elongatus PCC 7942 that intrinsically lacks lipid X. The slr2103 disruption causes Synechocystis cells to accumulate plastoquinone-C at an abnormally high level whereas slr2103 overexpression in Synechococcus causes the cells to almost completely lose it. It is thus deduced that slr2103 encodes a novel acyltransferase that esterifies 16:0 or 18:0 with plastoquinone-C for the synthesis of lipid Xb. Characterization of the slr2103-disruptant in Synechocystis shows that slr2103 contributes to sedimented-cell growth in a static culture, and to bloom-like structure formation and its expansion by promoting cell aggregation and floatation upon imposition of saline stress (0.3-0.6 M NaCl). These observations provide a basis for elucidation of the molecular mechanism of a novel cyanobacterial strategy to acclimatize to saline stress, and one for development of a system of seawater-utilization and economical harvesting of cyanobacterial cells with high-value added compounds, or blooming control of toxic cyanobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...