Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 23(20): 6733-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26386820

RESUMO

S-Nitrosoglutathione (GSNO) relaxes vascular smooth muscles, prevents platelet aggregation, and acts as a potential in vivo nitric oxide donor. 3-Nitroso-1,3-thiazolidine-4-thiocarboxamide (1), a N-nitrosothio-proline analogue, exhibited a high GSNO formation activity. In this study, two compounds (2 and 3) based on compound 1 were newly synthesized by introducing either one or two methyl groups onto a nitrogen atom on the thioamide substituent in 1. The pseudo-first-order rate constants (kobs) for the GSNO formation for the reaction between the compound and glutathione followed the order 1>2≒3. Thus, the introduction of a methyl group(s) onto the thioamide group led to a decrease in the transnitrosation activity. On the basis of density functional theoretical calculations, the transnitrosation for the N-nitrosothiazolidine thiocarboxamides was proposed to proceed via a bridged intermediate pathway. Specifically, the protonated compound 1 forms a bridged structure between the nitrogen atom in the nitroso group and two sulfur atoms-one in the ring and the other in the substituent. The bridged intermediate gives rise to a second intermediate in which the nitroso group is bonded to the sulfur atom in the thioamide group. Finally, the nitroso group is transferred to GSH to form GSNO.


Assuntos
Compostos Nitrosos/síntese química , Tiazóis/síntese química , Tiazolidinas/síntese química , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Nitrosação , Compostos Nitrosos/química , Teoria Quântica , Tiazóis/química , Tiazolidinas/química
2.
Bioorg Med Chem ; 21(24): 7853-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24184214

RESUMO

Aromatic and aliphatic nitrosamines are known to transfer a nitrosonium ion to another amine. The transnitrosation of alicyclic N-nitroso compounds generates S-nitrosothiols, which are potential nitric oxide donors in vivo. In this study, certain alicyclic N-nitroso compounds based on non-mutagenic N-nitrosoproline or N-nitrosothioproline were synthesised, and the formation of S-nitrosoglutathione (GSNO) was quantified under acidic conditions. We then investigated the effect of a sulfur atom as the substituent and as a ring component on the GSNO formation. In the presence of thiourea under acidic conditions, GSNO was formed from N-nitrosoproline and glutathione, and an N-nitroso compound containing a sulfur atom and glutathione produced GSNO without thiourea. The quantity of GSNO derived from the reaction of the N-nitrosamines containing a sulfur atom and glutathione was higher than that from the N-nitrosoproline and glutathione plus thiourea. Among the analogues that contained a sulfur atom either in the ring or as a substituent, the thiazolidines produced a slightly higher quantity of GSNO than the analogue with a thioamide group. A compound containing sulfur atoms both in the ring and as a substituent exhibited the highest activity for GSNO formation among the alicyclic N-nitrosamines tested. The results indicate that the intramolecular sulfur atom plays an important role in the transnitrosation via alicyclic N-nitroso compounds to form GSNO.


Assuntos
Nitrosaminas/química , Enxofre/química , Estrutura Molecular , S-Nitrosoglutationa/síntese química , S-Nitrosoglutationa/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...