Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1095919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844397

RESUMO

Bacteria of the family Flavobacteriaceae (flavobacteria) primarily comprise nonpathogenic bacteria that inhabit soil and water (both marine and freshwater). However, some bacterial species in the family, including Flavobacterium psychrophilum and Flavobacterium columnare, are known to be pathogenic to fish. Flavobacteria, including the abovementioned pathogenic bacteria, belong to the phylum Bacteroidota and possess two phylum-specific features, gliding motility and a protein secretion system, which are energized by a common motor complex. Herein, we focused on Flavobacterium collinsii (GiFuPREF103) isolated from a diseased fish (Plecoglossus altivelis). Genomic analysis of F. collinsii GiFuPREF103 revealed the presence of a type IX secretion system and additional genes associated with gliding motility and spreading. Using transposon mutagenesis, we isolated two mutants with altered colony morphology and colony spreading ability; these mutants had transposon insertions in pep25 and lbp26. The glycosylation material profiles revealed that these mutants lacked the high-molecular-weight glycosylated materials present in the wild-type strain. In addition, the wild-type strains exhibited fast cell population movement at the edge of the spreading colony, whereas reduced cell population behavior was observed in the pep25- and lbp26-mutant strains. In the aqueous environment, the surface layers of these mutant strains were more hydrophobic, and they formed biofilms with enhanced microcolony growth compared to those with the wild-type. In Flavobacterium johnsoniae, the Fjoh_0352 and Fjoh_0353 mutant strains were generated, which were based on the ortholog genes of pep25 and lbp26. In these F. johnsoniae mutants, as in F. collinsii GiFuPREF103, colonies with diminished spreading capacity were formed. Furthermore, cell population migration was observed at the edge of the colony in wild-type F. johnsoniae, whereas individual cells, and not cell populations, migrated in these mutant strains. The findings of the present study indicate that pep25 and lbp26 contribute to the colony spreading of F. collinsii.


Assuntos
Doenças dos Peixes , Osmeriformes , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Osmeriformes/genética , Osmeriformes/metabolismo , Flavobacterium/genética , Mutagênese , Bacteroidetes , Doenças dos Peixes/microbiologia
2.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199128

RESUMO

Flavobacterium johnsoniae forms a thin spreading colony on nutrient-poor agar using gliding motility. As reported in the first paper, WT cells in the colony were sparsely embedded in self-produced extracellular polymeric matrix (EPM), while sprB cells were densely packed in immature biofilm with less matrix. The colony surface is critical for antibiotic resistance and cell survival. We have now developed the Grid Stamp-Peel method whereby the colony surface is attached to a TEM grid for negative-staining microscopy. The images showed that the top of the spreading convex WT colonies was covered by EPM with few interspersed cells. Cells exposed near the colony edge made head-to-tail and/or side-to-side contact and sometimes connected via thin filaments. Nonspreading sprB and gldG and gldK colonies had a more uniform upper surface covered by different EPMs including vesicles and filaments. The EPM of sprB, gldG, and WT colonies contained filaments ~2 nm and ~5 nm in diameter; gldK colonies did not include the latter. Every cell near the edge of WT colonies had one or two dark spots, while cells inside WT colonies and cells in SprB-, GldG-, or GldK-deficient colonies did not. Together, our results suggest that the colony surface structure depends on the capability to expand biofilm.


Assuntos
Adesinas Bacterianas/genética , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Flavobacterium/fisiologia , Adesinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Flavobacterium/efeitos dos fármacos , Flavobacterium/ultraestrutura , Testes de Sensibilidade Microbiana , Mutação , Fenótipo
3.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672911

RESUMO

The Gram-negative bacterium Flavobacterium johnsoniae employs gliding motility to move rapidly over solid surfaces. Gliding involves the movement of the adhesin SprB along the cell surface. F. johnsoniae spreads on nutrient-poor 1% agar-PY2, forming a thin film-like colony. We used electron microscopy and time-lapse fluorescence microscopy to investigate the structure of colonies formed by wild-type (WT) F. johnsoniae and by the sprB mutant (ΔsprB). In both cases, the bacteria were buried in the extracellular polymeric matrix (EPM) covering the top of the colony. In the spreading WT colonies, the EPM included a thick fiber framework and vesicles, revealing the formation of a biofilm, which is probably required for the spreading movement. Specific paths that were followed by bacterial clusters were observed at the leading edge of colonies, and abundant vesicle secretion and subsequent matrix formation were suggested. EPM-free channels were formed in upward biofilm protrusions, probably for cell migration. In the nonspreading ΔsprB colonies, cells were tightly packed in layers and the intercellular space was occupied by less matrix, indicating immature biofilm. This result suggests that SprB is not necessary for biofilm formation. We conclude that F. johnsoniae cells use gliding motility to spread and maturate biofilms.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Flavobacterium/fisiologia , Locomoção/fisiologia , Proteínas de Bactérias/genética , Flavobacterium/genética , Flavobacterium/ultraestrutura , Locomoção/genética , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Mutação , Imagem com Lapso de Tempo/métodos
4.
Sci Rep ; 11(1): 967, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441737

RESUMO

Colony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.


Assuntos
Flavobacterium/metabolismo , Flavobacterium/fisiologia , Movimento/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flavobacterium/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Mutação/genética
5.
Methods Mol Biol ; 2210: 33-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32815125

RESUMO

Prevotella melaninogenica is a bacterium that is resident in the oral cavity and upper respiratory tract and is associated with periodontal disease and aspiration pneumonia. Prevotella mutants are difficult to produce and only few reports have been reported. We examined several methods and many strains and succeeded in producing mutants in Prevotella melaninogenica GAI 07411. In this chapter, we will describe how to create a mutation of a target gene by carrying out conjugation transfer using Escherichia coli S17-1 as a donor and introducing a plasmid into P. melaninogenica.


Assuntos
Escherichia coli/genética , Mutação/genética , Prevotella melaninogenica/genética , Animais , Boca/microbiologia , Doenças Periodontais/microbiologia , Coelhos
6.
Clin Exp Dent Res ; 5(5): 534-540, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31687188

RESUMO

Objectives: Infective endocarditis (IE) has an extremely high fatality rate. In this study, we isolated a strain of Streptococcus mutans, which we called HM, from the blood drawn from a 4-year-old girl diagnosed with IE. We aimed to fully type the HM strain and investigate its biological properties, including its virulence with respect to IE. Material and methods: A 16S rRNA phylogenetic tree and glucosyltransferase gene sequences were used to type HM. Serotyping was performed using the Ouchterlony method. Morphological observations were made using phase contrast and electron microscopy. Fibrinogen adhesion and biofilm formation were investigated to examine the tissue colonization properties of HM, whereas its bodily origin was determined from its fingerprinting pattern. Results: The isolated strain was S. mutans serotype e. However, its morphology was observed to be short chains, unlike that of the NCTC 10449 reference strain. Fibrinogen adhesion and biofilm formation were more apparent than in NCTC 10449. The fingerprinting pattern showed that HM came from the patient's saliva. Conclusions: HM differs from NCTC 10449 in its higher fibrinogen affinity. HM was also found to be derived from the oral cavity. These results highlight the importance of good oral hygiene for the prevention of IE in children.


Assuntos
Endocardite/diagnóstico , Infecções Estreptocócicas/diagnóstico , Streptococcus mutans/isolamento & purificação , Pré-Escolar , Endocardite/genética , Endocardite/metabolismo , Endocardite/microbiologia , Feminino , Glucosiltransferases/metabolismo , Humanos , Prognóstico , RNA Ribossômico 16S/genética , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Virulência
8.
Microbiol Immunol ; 62(9): 554-566, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30028034

RESUMO

Prevotella melaninogenica is a gram-negative anaerobic commensal bacterium that resides in the human oral cavity and is isolated as a pathogen of suppurative diseases both inside and outside the mouth. However, little is known about the pathogenic factors of P. melaninogenica. The periodontal pathogens Porphyromonas gingivalis and Tanerella forsythia secrete virulence factors such as protease and bacterial cell surface proteins via a type IX secretion system (T9SS) that are involved in pathogenicity. P. melaninogenica also possesses all known orthologs of T9SS. In this study, a P. melaninogenica GAI 07411 mutant deficient in the orthologue of the T9SS-encoding gene, porK, was constructed. Hemagglutination and biofilm formation were decreased in the porK mutant. Furthermore, following growth on skim milk-containing medium, the diameters of the halos surrounding the porK mutant were smaller than those of the wild-type strain, suggesting a decrease in secretion of proteases outside the bacterium. To investigate this in detail, culture supernatants of wild-type and porK mutant strains were purified and compared by two-dimensional electrophoresis. In the mutant strain, fewer spots were detected, indicating fewer secreted proteins. In infection experiments, the mortality rate of mice inoculated with the porK mutant strain was significantly lower than in the wild-type strain. These results suggest that P. melaninogenica secretes potent virulence factors via the T9SS that contribute to its pathogenic ability.


Assuntos
Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Genes Bacterianos/genética , Prevotella melaninogenica/genética , Prevotella melaninogenica/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Infecções por Bacteroidaceae/microbiologia , Biofilmes/crescimento & desenvolvimento , Feminino , Perfilação da Expressão Gênica , Loci Gênicos , Hemaglutinação , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Mortalidade , Boca/microbiologia , Mutação , Peptídeo Hidrolases/metabolismo , Doenças Periodontais/microbiologia , Prevotella melaninogenica/citologia , Prevotella melaninogenica/crescimento & desenvolvimento , Virulência
9.
Mol Microbiol ; 110(1): 64-81, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30030863

RESUMO

The periodontal pathogen Porphyromonas gingivalis secretes many potent virulence factors using the type IX secretion system (T9SS). T9SS cargo proteins that have been structurally determined by X-ray crystallography are composed of a signal peptide, functional domain(s), an immunoglobulin (Ig)-like domain and a C-terminal domain. Role of the Ig-like domains of cargo proteins in the T9SS has not been elucidated. Gingipain proteases, which are cargo proteins of the T9SS, were degraded when their Ig-like domains were lacking or truncated. The degradation was dependent on the activity of a quality control factor, HtrA protease. Another T9SS cargo protein, HBP35, which has a thioredoxin domain as a functional domain, was analyzed by X-ray crystallography, revealing that HBP35 has an Ig-like domain after the thioredoxin domain and that the hydrophobic regions of the thioredoxin domain and the Ig-like domain face each other. HBP35 with substitution of hydrophobic amino acids in the Ig-like domain was degraded depending on HtrA. These results suggest that the Ig-like domain mediates stability of the cargo proteins in the T9SS.


Assuntos
Adesinas Bacterianas/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Cisteína Endopeptidases/metabolismo , Domínios de Imunoglobulina/fisiologia , Porphyromonas gingivalis/fisiologia , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/genética , Caseínas/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases Gingipaínas , Domínios de Imunoglobulina/genética , Muramidase/metabolismo , Porphyromonas gingivalis/genética , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo
10.
Microbiol Immunol ; 62(8): 507-516, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29932229

RESUMO

Many members of the phylum Bacteroidetes, such as Flavobacterium johnsoniae, can glide over a solid surface: an ability called gliding motility. It can be usually observed on agar plates as thin, flat, spreading colonies with irregular, feathery edges; this phenomenon is called colony spreading. Colony spreading of F. johnsoniae on 1.5% agar plates containing poor nutrients is dose-dependently inhibited by addition of D-glucose, as previously reported. Accordingly, here, we created mutants (by transposon mutagenesis) that partially suppressed glucose-mediated inhibition of colony spreading. Among the isolates, we found that one had a transposon insertion in Fjoh_4565, tentatively named mfsA, which encodes a major facilitator superfamily (MFS) transporter previously shown to be required for growth on glucose, N-acetyl-glucosamine, and chitin. We constructed an mfsA deletion mutant and found that the mutant showed no glucose-mediated acceleration of growth or glucose uptake. The mfsA gene complemented the phenotype of a glucose-negative Escherichia coli. These results suggest that the mfsA gene encodes the sole MFS transporter of glucose in F. johnsoniae and that glucose uptake is partially required for the glucose-mediated inhibition of F. johnsoniae colony spreading.


Assuntos
Flavobacterium/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Locomoção/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura de Células , Quitina/metabolismo , Meios de Cultura/química , DNA Bacteriano/análise , Escherichia coli/citologia , Escherichia coli/metabolismo , Fermentação , Flavobacterium/citologia , Flavobacterium/genética , Flavobacterium/crescimento & desenvolvimento , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Glucosamina/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Mutagênese , Fenótipo
11.
Genome Announc ; 5(33)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818910

RESUMO

We report the draft genome sequence of Streptococcus mutans strain HM isolated from a 4-year-old girl with infective endocarditis. The genomics information will provide information on the genetic diversity and virulence potential of S. mutans strain HM.

12.
Genome Announc ; 4(6)2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28007849

RESUMO

Streptococcus sp. strain NPS 308, isolated from an 8-year-old girl diagnosed with infective endocarditis, likely presents a novel species of Streptococcus Here, we present a complete genome sequence of this species, which will contribute to better understanding of the pathogenesis of infective endocarditis.

13.
Sci Rep ; 6: 23288, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996145

RESUMO

The periodontopathogen Porphyromonas gingivalis secretes potent pathogenic proteases, gingipains, via the type IX secretion system (T9SS). This system comprises at least 11 components; however, the regulatory mechanism of their expression has not yet been elucidated. Here, we found that the PorY (PGN_2001)-PorX (PGN_1019)-SigP (PGN_0274) cascade is involved in the regulation of T9SS. Surface plasmon resonance (SPR) analysis revealed a direct interaction between a recombinant PorY (rPorY) and a recombinant PorX (rPorX). rPorY autophosphorylated and transferred a phosphoryl group to rPorX in the presence of Mn(2+). These results demonstrate that PorX and PorY act as a response regulator and a histidine kinase, respectively, of a two component system (TCS), although they are separately encoded on the chromosome. T9SS component-encoding genes were down-regulated in a mutant deficient in a putative extracytoplasmic function (ECF) sigma factor, PGN_0274 (SigP), similar to the porX mutant. Electrophoretic gel shift assays showed that rSigP bound to the putative promoter regions of T9SS component-encoding genes. The SigP protein was lacking in the porX mutant. Co-immunoprecipitation and SPR analysis revealed the direct interaction between SigP and PorX. Together, these results indicate that the PorXY TCS regulates T9SS-mediated protein secretion via the SigP ECF sigma factor.


Assuntos
Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Porphyromonas gingivalis/genética , Fator sigma/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosforilação , Porphyromonas gingivalis/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transcrição Gênica
14.
Infect Immun ; 84(1): 230-40, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26502912

RESUMO

The oral Gram-negative anaerobic bacterium Porphyromonas gingivalis is an important pathogen involved in chronic periodontitis. Among its virulence factors, the major extracellular proteinases, Arg-gingipain and Lys-gingipain, are of interest given their abilities to degrade host proteins and process other virulence factors. Gingipains possess C-terminal domains (CTDs) and are translocated to the cell surface or into the extracellular milieu by the type IX secretion system (T9SS). Gingipains contribute to the colonial pigmentation of the bacterium on blood agar. In this study, Omp17, the PGN_0300 gene product, was found in the outer membrane fraction. A mutant lacking Omp17 did not show pigmentation on blood agar and showed reduced proteolytic activity of the gingipains. CTD-containing proteins were released from bacterial cells without cleavage of the CTDs in the omp17 mutant. Although synthesis of the anionic polysaccharide (A-LPS) was not affected in the omp17 mutant, the processing of and A-LPS modification of CTD-containing proteins was defective. PorU, a C-terminal signal peptidase that cleaves the CTDs of other CTD-containing proteins, was not detected in any membrane fraction of the omp17 mutant, suggesting that the defective maturation of CTD-containing proteins by impairment of Omp17 is partly due to loss of function of PorU. In the mouse subcutaneous infection experiment, the omp17 mutant was less virulent than the wild type. These results suggested that Omp17 is involved in P. gingivalis virulence.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Sistemas de Secreção Bacterianos/imunologia , Cisteína Endopeptidases/metabolismo , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência/genética , Adesinas Bacterianas/imunologia , Animais , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases Gingipaínas , Camundongos , Camundongos Endogâmicos BALB C , Periodontite/microbiologia , Transporte Proteico
15.
PLoS One ; 6(6): e21372, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731719

RESUMO

The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS), which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps) and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs) in their C-termini. Hemin-binding protein 35 (HBP35), which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS) revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Hemeproteínas/metabolismo , Porphyromonas gingivalis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Transporte/química , Difusão/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/química , Immunoblotting , Lipopolissacarídeos/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mapeamento de Peptídeos , Porphyromonas gingivalis/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo
16.
Clin Vaccine Immunol ; 18(9): 1552-61, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21795464

RESUMO

In the development of a component vaccine against caries, the catalytic region (CAT) and glucan-binding domain (GBD) of glucosyltransferase B (GtfB) from Streptococcus mutans have been employed as target antigens. These regions were adopted as primary targets because they theoretically include epitopes associated with enzyme function. However, their antigenicities have not been fully evaluated. Although there are many reports about successful vaccination using these components, the principle has not yet been put to practical use. For these reasons, we came to doubt the effectiveness of the epitopes in vaccine production and reevaluated the antigenic region of GtfB by using in silico analyses combined with in vitro and in vivo experiments. The results suggested that the ca. 360-amino-acid variable region (VR) in the N terminus of GtfB is more reactive than CAT and GBD. This region is S. mutans and/or GtfB specific, nonconserved among other streptococcal Gtfs, and of unknown function. Immunization using an adenovirus vector-borne DNA vaccine confirmed that VR is an epitope that shows promise for the development of a caries vaccine.


Assuntos
Antígenos de Bactérias , Epitopos , Glucosiltransferases , Streptococcus mutans/enzimologia , Adenoviridae/genética , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Domínio Catalítico/imunologia , Linhagem Celular , Cárie Dentária/prevenção & controle , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Feminino , Vetores Genéticos , Glucanos/metabolismo , Glucosiltransferases/química , Glucosiltransferases/imunologia , Humanos , Imunização , Camundongos , Streptococcus mutans/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/química , Vacinas de DNA/genética , Vacinas de DNA/imunologia
17.
Infect Immun ; 78(6): 2846-56, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20351137

RESUMO

Porphyromonas gingivalis is one of the most etiologically important microorganisms in periodontal disease. We found in a previous study that PG1385 (TprA) protein, a tetratricopeptide repeat (TPR) protein, was upregulated in P. gingivalis wild-type cells placed in a mouse subcutaneous chamber and that a tprA mutant was clearly less virulent in the mouse subcutaneous abscess model (M. Yoshimura et al., Oral Microbiol. Immunol. 23:413-418, 2008). In the present study, we investigated the gene expression profile of tprA mutant cells placed in a mouse subcutaneous chamber and found that 9 genes, including PG2102 (tapA), PG2101 (tapB), and PG2100 (tapC) genes, were downregulated in the tprA mutant compared with those in the wild type. Expression of a cluster of tapA, tapB, and tapC genes of the mutant was also downregulated in an in vitro culture with enriched brain heart infusion medium. The TprA protein has three TPR motifs known as a protein-protein interaction module. Yeast two-hybrid system analysis and in vitro protein binding assays with immunoprecipitation and surface plasmon resonance detection revealed that the TprA protein could bind to TapA and TapB proteins. TprA and TapB proteins were located in the periplasmic space, whereas TapA, which appeared to be one of the C-terminal domain family proteins, was located at the outer membrane. We constructed tapA, tapB, and tapC single mutants and a tapA-tapB-tapC deletion mutant. In the mouse subcutaneous infection experiment, all of the mutants were less virulent than the wild type. These results suggest that TprA, TapA, TapB, and TapC are cooperatively involved in P. gingivalis virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Infecções por Bacteroidaceae/microbiologia , Meios de Cultura/química , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Periplasma/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Infecções dos Tecidos Moles/microbiologia , Ressonância de Plasmônio de Superfície , Técnicas do Sistema de Duplo-Híbrido , Virulência , Fatores de Virulência/genética
18.
J Oral Microbiol ; 12009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21523207

RESUMO

BACKGROUND: Population analysis of viridans streptococci is important because these species are associated with dental caries, bacteremia, and subacute endocarditis, in addition to being important members of the human oral commensal microbiota. DESIGN: In this study, we phylogenetically analyzed the rod shape-determining protein gene (rodA), which is associated with cellular morphology, cell division, and sensitivity for antibiotics, and demonstrated that the diversity of the rodA gene is sufficient to identify viridans streptococci at the species level. Moreover, we developed a more convenient denaturing gradient gel electrophoresis (DGGE) method based on the diversity of the rodA gene (rodA-DGGE) for detecting nine dominant streptococcal species in human saliva, namely, Streptococcus sanguinis, Streptococcus oralis, Streptococcus mitis, Streptococcus parasanguinis, Streptococcus gordonii, Streptococcus vestibularis, Streptococcus salivarius, Streptococcus mutans, and Streptococcus sobrinus. RESULTS: This rodA-DGGE method proved useful in detecting viridans streptococci without cultivation, isolation, and phenotypic characterization. CONCLUSION: Analysis of the oral microbiota by rodA-DGGE offers a higher resolution than the conventional DGGE using 16S rDNA and may be an alternative in the microbial diagnosis of streptococcal infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...