Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402189, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973106

RESUMO

2D magnets are expected to give new insights into the fundamentals of magnetism, host novel quantum phases, and foster development of ultra-compact spintronics. However, the scarcity of 2D magnets often makes a bottleneck in the research efforts, prompting the search for new magnetic systems and synthetic routes. Here, an unconventional approach is adopted to the problem, graphenization - stabilization of layered honeycomb materials in the 2D limit. Tetragonal GdAlSi, stable in the bulk, in ultrathin films gives way to its layered counterpart - graphene-like anionic AlSi layers coupled to Gd cations. A series of inch-scale films of layered GdAlSi on silicon is synthesized, down to a single monolayer, by molecular beam epitaxy. Graphenization induces an easy-plane ferromagnetic order in GdAlSi. The magnetism is controlled by low magnetic fields, revealing its 2D nature. Remarkably, it exhibits a non-monotonic evolution with the number of monolayers. The results provide a fresh platform for research on 2D magnets by design.

2.
J Am Chem Soc ; 146(23): 15761-15770, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38825888

RESUMO

Layered magnets are stand-out materials because of their range of functional properties that can be controlled by external stimuli. Regretfully, the class of such compounds is rather narrow, prompting the search for new members. Graphitization─stabilization of layered graphitic structures in the 2D limit─is being discussed for cubic materials. We suggest the phenomenon to extend beyond cubic structures; it can be employed as a viable route to a variety of layered materials. Here, the idea of graphitization is put into practice to produce a new layered magnet, GdAlSi. The honeycomb material, based on graphene-like layers AlSi, is studied both experimentally and theoretically. Epitaxial films of GdAlSi are synthesized on silicon; the critical thickness for the stability of the layered polymorph is around 20 monolayers. Notably, the layered polymorph of GdAlSi demonstrates ferromagnetism, in contrast to the nonlayered, tetragonal polymorph. The ferromagnetism is further supported by electron transport measurements revealing negative magnetoresistance and the anomalous Hall effect. The results show that graphitization can be a powerful tool in the design of functional layered materials.

3.
Nanoscale ; 16(10): 5302-5312, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372414

RESUMO

Intrinsic 2D magnets have recently been established as a playground for studies on fundamentals of magnetism, quantum phases, and spintronic applications. The inherent instability at low dimensionality often results in coexistence and/or competition of different magnetic orders. Such instability of magnetic ordering may manifest itself as phase-separated states. In 4f 2D materials, magnetic phase separation is expressed in various experiments; however, the experimental evidence is circumstantial. Here, we employ a high-sensitivity MFM technique to probe the spatial distribution of magnetic states in the paradigmatic 4f 2D ferromagnet EuGe2. Below the ferromagnetic transition temperature, we discover the phase-separated state and follow its evolution with temperature and magnetic field. The characteristic length-scale of magnetic domains amounts to hundreds of nanometers. These observations strongly shape our understanding of the magnetic states in 2D materials at the monolayer limit and contribute to engineering of ultra-compact spintronics.

4.
Nanomaterials (Basel) ; 13(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063759

RESUMO

The nanosecond speed of information writing and reading is recognized as one of the main advantages of next-generation non-volatile ferroelectric memory based on hafnium oxide thin films. However, the kinetics of polarization switching in this material have a complex nature, and despite the high speed of internal switching, the real speed can deteriorate significantly due to various external reasons. In this work, we reveal that the domain structure and the dielectric layer formed at the electrode interface contribute significantly to the polarization switching speed of 10 nm thick Hf0.5Zr0.5O2 (HZO) film. The mechanism of speed degradation is related to the generation of charged defects in the film which accompany the formation of the interfacial dielectric layer during oxidization of the electrode. Such defects are pinning centers that prevent domain propagation upon polarization switching. To clarify this issue, we fabricate two types of similar W/HZO/TiN capacitor structures, differing only in the thickness of the electrode interlayer, and compare their ferroelectric (including local ferroelectric), dielectric, structural (including microstructural), chemical, and morphological properties, which are comprehensively investigated using several advanced techniques, in particular, hard X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electron beam induced current technique.

5.
Small ; 19(39): e2302065, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259278

RESUMO

Layered materials exhibit a plethora of fascinating properties. The challenge is to make the materials into epitaxial films, preferably integrated with mature technological platforms to facilitate their potential applications. Progress in this direction can establish the film thickness as a valuable parameter to control various phenomena, superconductivity in particular. Here, a synthetic route to epitaxial films of SrAlSi, a layered superconducting electride, on silicon is designed. A set of films ranging in thickness is synthesized employing a silicene-based template. Their structure and superconductivity are explored by a combination of techniques. Two regimes of TC dependence on the film thickness are identified, the coherence length being the crossover parameter. The results can be extended to syntheses of other honeycomb-lattice ternary compounds on Si or Ge exhibiting superconducting, magnetic, and other properties.

6.
Nanoscale Horiz ; 8(6): 803-811, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36987577

RESUMO

2D magnets have recently emerged as a host for unconventional phases and related phenomena. The prominence of 2D magnetism stems from its high amenability to external stimuli and structural variations. The low dimensionality facilitates competition between magnetic orders which may give rise to exchange bias, in particular in magnetic heterostructures. Here, we propose a strategy for the search of exchange bias state in 2D individual compounds. We track the evolution of magnetic orders driven by the number of monolayers in a system exhibiting antiferromagnetism in the multilayer and ferromagnetism in the monolayer limit. The material, EuSi2, has the structure of multilayer silicene intercalated by Eu. A strong intrinsic exchange bias effect accompanies the dimensional crossover. Comparison with silicene-based GdSi2 and germanene-based EuGe2 suggests the competition between magnetic orders to be a common property of this class of materials that may be useful in spintronic applications.

7.
Materials (Basel) ; 16(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36676273

RESUMO

We present an extensive study of the luminescence characteristics of Mn impurity ions in a YAl3(BO3)4:Mn crystal, in combination with X-ray fluorescence analysis and determination of the valence state of Mn by XANES (X-ray absorption near-edge structure) spectroscopy. The valences of manganese Mn2+(d5) and Mn3+(d4) were determined by the XANES and high-resolution optical spectroscopy methods shown to be complementary. We observe the R1 and R2 luminescence and absorption lines characteristic of the 2E ↔ 4A2 transitions in d3 ions (such as Mn4+ and Cr3+) and show that they arise due to uncontrolled admixture of Cr3+ ions. A broad luminescent band in the green part of the spectrum is attributed to transitions in Mn2+. Narrow zero-phonon infrared luminescence lines near 1060 nm (9400 cm−1) and 760 nm (13,160 cm−1) are associated with spin-forbidden transitions in Mn3+: 1T2 → 3T1 (between excited triplets) and 1T2 → 5E (to the ground state). Spin-allowed 5T2 → 5E Mn3+ transitions show up as a broad band in the orange region of the spectrum. Using the data of optical spectroscopy and Tanabe−Sugano diagrams we estimated the crystal-field parameter Dq and Racah parameter B for Mn3+ in YAB:Mn as Dq = 1785 cm−1 and B = 800 cm−1. Our work can serve as a basis for further study of YAB:Mn for the purposes of luminescent thermometry, as well as other applications.

8.
ACS Nano ; 16(11): 19482-19490, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36278843

RESUMO

The inherent malleability of 2D magnetism provides access to unconventional quantum phases, in particular those with coexisting magnetic orders. Incidentally, in a number of materials, the magnetic state in the bulk undergoes a fundamental change when the system is pushed to the monolayer limit. Therefore, a competition of magnetic states can be expected in the crossover region. Here, an exchange bias state is observed at the crossover from 3D antiferromagnetism to 2D ferromagnetism driven by the number of monolayers in the metalloxene GdSi2. The material constitutes a stack of alternating monolayers of Gd and silicene, the Si analogue of graphene. The exchange bias manifests itself as a shift of the hysteresis loop signifying coupling of magnetic systems, as evidenced by magnetization studies. Two features distinguish the phenomenon: (i) it is intrinsic, i.e. it is detected in an individual compound; (ii) the exchange bias field, 1.5 kOe, is unusually high, which is conducive to applications. The results suggest magnetic derivatives of 2D-Xenes to be prospective materials for ultracompact spintronics.

9.
Mater Horiz ; 9(11): 2854-2862, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36056695

RESUMO

Silicene, a Si-based analogue of graphene, holds a high promise for electronics because of its exceptional properties but a high chemical reactivity makes it a very challenging material to work with. The silicene lattice can be stabilized by active metals to form stoichiometric compounds MSi2. Being candidate topological semimetals, these materials provide an opportunity to probe layer dependence of unconventional electronic structures. It is demonstrated here that in the silicene compound SrSi2, the number of monolayers controls the electronic state. A series of films ranging from bulk-like multilayers down to a single monolayer have been synthesized on silicon and characterized with a combination of techniques - from electron and X-ray diffraction to high-resolution electron microscopy. Transport measurements reveal evolution of the chiral anomaly in bulk SrSi2 to weak localization in ultrathin films down to 3 monolayers followed by 3D and 2D strong localization in 2 and 1 monolayers, respectively. The results outline the range of stability of the chiral state, important for practical applications, and shed light on the localization phenomena in the limit of a few monolayers.

10.
ACS Appl Mater Interfaces ; 10(41): 35589-35598, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30247015

RESUMO

The mature silicon technological platform is actively explored for spintronic applications. Metal silicides are an integral part of the Si technology used as interconnects, gate electrodes, and diffusion barriers; their epitaxial integration with Si results in premier contacts. Recent studies highlight the exceptional role of electronic discontinuities at interfaces in the spin-dependent transport properties. Here, we report a new type of Hall conductivity driven by sharp interfaces of Eu silicide, an antiferromagnetic metal, sandwiched between two insulators - Si and SiO x. Quasi-ballistic transport probes spin-orbit coupling at the interfaces, in particular, charge-spin interconversion. Transverse magnetic field results in anomalous Hall effect signals of an unusual line shape. The interplay between opposite-sign signals from the two interfaces allows efficient control over the magnitude and sign of the overall effect. Selective engineering of interfaces singles out a particular spin signal. The two-channel nature of the effect and its high tunability offer new functional possibilities for future spintronic devices.

11.
Nat Commun ; 9(1): 1672, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700295

RESUMO

The appeal of ultra-compact spintronics drives intense research on magnetism in low-dimensional materials. Recent years have witnessed remarkable progress in engineering two-dimensional (2D) magnetism via defects, edges, adatoms, and magnetic proximity. However, intrinsic 2D ferromagnetism remained elusive until recent discovery of out-of-plane magneto-optical response in Cr-based layers, stimulating the search for 2D magnets with tunable and diverse properties. Here we employ a bottom-up approach to produce layered structures of silicene (a Si counterpart of graphene) functionalized by rare-earth atoms, ranging from the bulk down to one monolayer. We track the evolution from the antiferromagnetism of the bulk to intrinsic 2D in-plane ferromagnetism of ultrathin layers, with its characteristic dependence of the transition temperature on low magnetic fields. The emerging ferromagnetism manifests itself in the electron transport. The discovery of a class of robust 2D magnets, compatible with the mature Si technology, is instrumental for engineering new devices and understanding spin phenomena.

12.
Nanotechnology ; 29(19): 195706, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29469062

RESUMO

Metal-insulator transitions (MITs) offer new functionalities for nanoelectronics. However, ongoing attempts to control the resistivity by external stimuli are hindered by strong coupling of spin, charge, orbital and lattice degrees of freedom. This difficulty presents a quest for materials which exhibit MIT caused by a single degree of freedom. In the archetypal ferromagnetic semiconductor EuO, magnetic orders dominate the MIT. Here we report a new approach to take doping under control in this material on the nanoscale: formation of oxygen vacancies is strongly suppressed to exhibit the highest MIT resistivity jump and magnetoresistance among thin films. The nature of the MIT is revealed in Gd doped films. The critical doping is determined to be more than an order of magnitude lower than in all previous studies. In lightly doped films, a remarkable thermal hysteresis in resistivity is discovered. It extends over 100 K in the paramagnetic phase reaching 3 orders of magnitude. In the warming mode, the MIT is shown to be a two-step process. The resistivity patterns are consistent with an active role of magnetic polarons-formation of a narrow band and its thermal destruction. High-temperature magnetic polaron effects include large negative magnetoresistance and ferromagnetic droplets revealed by x-ray magnetic circular dichroism. Our findings have wide-range implications for the understanding of strongly correlated oxides and establish fundamental benchmarks to guide theoretical models of the MIT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...