Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 17041-17050, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517684

RESUMO

The ultrafast manipulation of spin in ferromagnet-semiconductor (FM/SC) heterojunctions is a key issue for advancing spintronics, where magnetic damping and interfacial spin transport often define device efficiency. Leveraging selective optical excitation in semiconductors offers a unique approach to spin manipulation in FM/SC heterojunctions. Herein, we investigated the magnetic dynamics of a Co2FeAl/n-GaAs heterojunction using the time-resolved magneto-optical Kerr technique and observed the considerably enhanced magnetic damping of Co2FeAl when GaAs is photoexcited near its band edge. This enhancement is attributed to an enhanced spin-pumping effect facilitated by spin-dependent carrier tunneling and capture within the Co2FeAl layer. Moreover, circularly polarized light excites spin-polarized band-edge photocarriers, further impacting the magnetic damping of Co2FeAl through an additional optical spin-transfer torque on the magnetic moment of Co2FeAl. Our results provide a valuable reference for manipulating spin-pumping and interfacial spin transport in FM/SC heterojunctions, showcasing the advantage of optical control of semiconductor photocarriers for the ultrafast manipulation of magnetic dynamics and interfacial spin transfer.

2.
Materials (Basel) ; 17(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399096

RESUMO

The growth of InGaAs quantum wells (QWs) epitaxially on InP substrates is of great interest due to their wide application in optoelectronic devices. However, conventional molecular beam epitaxy requires substrate temperatures between 400 and 500 °C, which can lead to disorder scattering, dopant diffusion, and interface roughening, adversely affecting device performance. Lower growth temperatures enable the fabrication of high-speed optoelectronic devices by increasing arsenic antisite defects and reducing carrier lifetimes. This work investigates the low-temperature epitaxial growth of InAs/GaAs short-period superlattices as an ordered replacement for InGaAs quantum wells, using migration-enhanced epitaxy (MEE) with low growth temperatures down to 200-250 °C. The InAs/GaAs multi-quantum wells with InAlAs barriers using MEE grown at 230 °C show good single crystals with sharp interfaces, without mismatch dislocations found. The Raman results reveal that the MEE mode enables the growth of (InAs)4(GaAs)3/InAlAs QWs with excellent periodicity, effectively reducing alloy scattering. The room temperature (RT) photoluminescence (PL) measurement shows the strong PL responses with narrow peaks, revealing the good quality of the MEE-grown QWs. The RT electron mobility of the sample grown in low-temperature MEE mode is as high as 2100 cm2/V∗s. In addition, the photoexcited band-edge carrier lifetime was about 3.3 ps at RT. The high-quality superlattices obtained confirm MEE's effectiveness for enabling advanced III-V device structures at reduced temperatures. This promises improved performance for applications in areas such as high-speed transistors, terahertz imaging, and optical communications.

3.
Nanomaterials (Basel) ; 14(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38334565

RESUMO

The low-temperature-grown InGaAs (LT-InGaAs) photoconductive antenna has received great attention for the development of highly compact and integrated cheap THz sources. However, the performance of the LT-InGaAs photoconductive antenna is limited by its low resistivity and mobility. The generated radiated power is much weaker compared to the low-temperature-grown GaAs-based photoconductive antennas. This is mainly caused by the low abundance of excess As in LT-InGaAs with the conventional growth mode, which inevitably gives rise to the formation of As precipitate and alloy scattering after annealing. In this paper, the migration-enhanced molecular beam epitaxy technique is developed to grow high-quality (InAs)m/(GaAs)n short-period superlattices with a sharp interface instead of InGaAs on InP substrate. The improved electron mobility and resistivity at room temperature (RT) are found to be 843 cm2/(V·s) and 1648 ohm/sq, respectively, for the (InAs)m/(GaAs)n short-period superlattice. The band-edge photo-excited carrier lifetime is determined to be ~1.2 ps at RT. The calculated photocurrent intensity, obtained by solving the Maxwell wave equation and the coupled drift-diffusion/Poisson equation using the finite element method, is in good agreement with previously reported results. This work may provide a new approach for the material growth towards high-performance THz photoconductive antennas with high radiation power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...