Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37653875

RESUMO

Iron is an essential element for most organisms. Both plants and microorganisms have developed different mechanisms for iron uptake, transport and storage. In the symbiosis systems, such as rhizobia-legume symbiosis and arbuscular mycorrhizal (AM) symbiosis, maintaining iron homeostasis to meet the requirements for the interaction between the host plants and the symbiotic microbes is a new challenge. This intriguing topic has drawn the attention of many botanists and microbiologists, and many discoveries have been achieved so far. In this review, we discuss the current progress on iron uptake and transport in the nodules and iron homeostasis in rhizobia-legume symbiosis. The discoveries with regard to iron uptake in AM fungi, iron uptake regulation in AM plants and interactions between iron and other nutrient elements during AM symbiosis are also summarized. At the end of this review, we propose prospects for future studies in this fascinating research area.

2.
J Integr Plant Biol ; 64(6): 1157-1167, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35396901

RESUMO

Iron and zinc are critical micronutrients for human health. Approximately two billion people suffer from iron and zinc deficiencies worldwide, most of whom rely on rice (Oryza sativa) and wheat (Triticum aestivum) as staple foods. Therefore, biofortifying rice and wheat with iron and zinc is an important and economical approach to ameliorate these nutritional deficiencies. In this review, we provide a brief introduction to iron and zinc uptake, translocation, storage, and signaling pathways in rice and wheat. We then discuss current progress in efforts to biofortify rice and wheat with iron and zinc. Finally, we provide future perspectives for the biofortification of rice and wheat with iron and zinc.


Assuntos
Biofortificação , Oryza , Humanos , Ferro/metabolismo , Oryza/metabolismo , Triticum/metabolismo , Zinco/metabolismo
3.
Yi Chuan ; 44(3): 245-252, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35307647

RESUMO

Gibberellins are a class of typical phytohormones, which regulate plant growth and development. The contents of gibberellins dramatically affect the morphology and biomass of plant. The encoding protein of copalyl diphosphate synthase gene (CPS) catalyzes the first-step in the biosynthetic pathway of gibberellins. The mutation in this gene may significantly affect the contents of gibberellins in plants. In this study, we found an EMS-triggered mutant, ga1-168, showing short roots, short hypocotyls, late flowering and dwarf. Map-based cloning revealed that the causal gene of ga1-168 was AtCPS-168, an allele of AtCPS gene. The encoding protein of AtCPS-168 was AtCPS V326M which was resulted from a single-point mutation (guanine to adenine at nucleotide 2768) of AtCPS gene. Protein domain analysis showed that V326 was located in the Terpene_synth domain. The allelism test demonstrated that AtCPS-168 was an allele of AtCPS gene. The transgenic complementation of ga1-168 indicated that AtCPS V326M led to the dwarf and bushy phenotype of ga1-168. The endogenous gibberellins contents analysis suggested that the gibberellins contents of ga1-168 were much lower than that of wild-type. The exogenous GA3 application assay uncovered that application of GA3 can complement the dwarf and bushy phenotype of ga1-168 caused by low endogenous gibberellins contents. Therefore, this study suggested that it is an elegant way to create the ideal plant architecture and height by site-directed mutating the gibberellin biosynthetic genes.


Assuntos
Arabidopsis/genética , Giberelinas , Reguladores de Crescimento de Plantas , Giberelinas/metabolismo , Fenótipo
4.
J Exp Bot ; 72(6): 2114-2124, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33161430

RESUMO

Iron is an essential element for most organisms. As an indispensable co-factor of many enzymes, iron is involved in various crucial metabolic processes that are required for the survival of plants and pathogens. Conversely, excessive iron produces highly active reactive oxygen species, which are toxic to the cells of plants and pathogens. Therefore, plants and pathogens have evolved sophisticated mechanisms to modulate iron status at a moderate level for maintaining their fitness. Over the past decades, many efforts have been made to reveal these mechanisms, and some progress has been made. In this review, we describe recent advances in understanding the roles of iron in plant-pathogen interactions and propose prospects for future studies.


Assuntos
Ferro , Plantas , Interações Hospedeiro-Patógeno , Espécies Reativas de Oxigênio
5.
J Exp Bot ; 71(18): 5562-5576, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32453812

RESUMO

Plants can be simultaneously exposed to multiple stresses. The interplay of abiotic and biotic stresses may result in synergistic or antagonistic effects on plant development and health. Temporary drought stress can stimulate plant immunity; however, the molecular mechanism of drought-induced immunity is largely unknown. In this study, we demonstrate that cysteine protease RD21A is required for drought-induced immunity. Temporarily drought-treated wild-type Arabidopsis plants became more sensitive to the bacterial pathogen-associated molecular pattern flg22, triggering stomatal closure, which resulted in increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst-DC3000). Knocking out rd21a inhibited flg22-triggered stomatal closure and compromised the drought-induced immunity. Ubiquitin E3 ligase SINAT4 interacted with RD21A and promoted its degradation in vivo. The overexpression of SINAT4 also consistently compromised the drought-induced immunity to Pst-DC3000. A bacterial type III effector, AvrRxo1, interacted with both SINAT4 and RD21A, enhancing SINAT4 activity and promoting the degradation of RD21A in vivo. Therefore, RD21A could be a positive regulator of drought-induced immunity, which could be targeted by pathogen virulence effectors during pathogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cisteína Proteases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína Proteases/genética , Secas , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Pseudomonas syringae/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
New Phytol ; 216(1): 76-89, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28742236

RESUMO

The Arabidopsis thaliana gene XYLEM NAC DOMAIN1 (XND1) is upregulated in xylem tracheary elements. Yet overexpression of XND1 blocks differentiation of tracheary elements. The molecular mechanism of XND1 action was investigated. Phylogenetic and motif analyses indicated that XND1 and its homologs are present only in angiosperms and possess a highly conserved C-terminal region containing linear motifs (CKII-acidic, LXCXE, E2FTD -like and LXCXE-mimic) predicted to interact with the cell cycle and differentiation regulator RETINOBLASTOMA-RELATED (RBR). Protein-protein interaction and functional analyses of XND1 deletion mutants were used to test the importance of RBR-interaction motifs. Deletion of either the LXCXE or the LXCXE-mimic motif reduced both the XND1-RBR interaction and XND1 efficacy as a repressor of differentiation, with loss of the LXCXE motif having the strongest negative impacts. The function of the XND1 C-terminal domain could be partially replaced by RBR fused to the N-terminal domain of XND1. XND1 also transactivated gene expression in yeast and plants. The properties of XND1, a transactivator that depends on multiple linear RBR-interaction motifs to inhibit differentiation, have not previously been described for a plant protein. XND1 harbors an apparently angiosperm-specific combination of interaction motifs potentially linking the general differentiation regulator RBR with a xylem-specific pathway for inhibition of differentiation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Xilema/citologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis , Fenótipo , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Transativadores/metabolismo
7.
Front Mol Biosci ; 3: 70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833912

RESUMO

Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium supplemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of A. tumefaciens in the plant tissue culture process. We generated a mutant A. tumefaciens strain GV2260 (recA-SacB/R) that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R) can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R) to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcription factor.

8.
Mol Plant ; 9(2): 261-270, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26621542

RESUMO

Sugars promote lateral root formation at low levels but become inhibitory at high C/N or C/P ratios. How sugars suppress lateral root formation is unclear, however. Here we report that WOX7, a member of the WUSCHEL related homeobox (WOX) family transcription factors, inhibits lateral root development in a sugar-dependent manner. The number of lateral root primordia increased in wox7 mutants but decreased in plants over-expressing WOX7. Plants expressing the WOX7-VP16 fusion protein produced even more lateral roots than wox7, suggesting that WOX7 acts as a transcriptional repressor in lateral root development. WOX7 is expressed at all stages of lateral root development, but it is primarily involved in lateral root initiation. Consistent with this, the wox7 mutant had a higher mitotic activity only at early stages of lateral root development. Further studies suggest that WOX7 regulates lateral root development through direct repression of cell cycle genes, particularly CYCD6;1. WOX7 expression was enhanced by sugar, reduced by auxin, but did not respond to salt and mannitol. In the wox7 mutant, the effect of sugar on lateral root formation was mitigated. These results together suggest that WOX7 plays an important role in coupling the lateral root development program and sugar status in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Proteínas de Homeodomínio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética
9.
Mol Plant ; 7(12): 1727-39, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267734

RESUMO

Reactive oxygen species (ROS) are harmful to all living organisms and therefore they must be removed to ensure normal growth and development. ROS are also signaling molecules, but so far little is known about the mechanisms of ROS perception and developmental response in plants. We here report that hydrogen peroxide induces cortex proliferation in the Arabidopsis root and that SPINDLY (SPY), an O-linked glucosamine acetyltransferase, regulates cortex proliferation by maintaining cellular redox homeostasis. We also found that mutation in the leucine-rich receptor kinase ERECTA and its putative peptide ligand STOMAGEN block the effect of hydrogen peroxide on root cortex proliferation. However, ERECTA and STOMAGEN are expressed in the vascular tissue, whereas extra cortex cells are produced from the endodermis, suggesting the involvement of intercellular signaling. SPY appears to act downstream of ERECTA, because the spy mutation still caused cortex proliferation in the erecta mutant background. We therefore have not only gained insight into the mechanism by which SPY regulates root development but also uncovered a novel pathway for ROS signaling in plants. The importance of redox-mediated cortex proliferation as a protective mechanism against oxidative stress is also discussed.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Mutação , Oxirredução , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases , Receptores de Superfície Celular , Proteínas Repressoras
10.
Plant J ; 78(2): 319-27, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517883

RESUMO

Bundle sheath (BS) cells form a single cell layer surrounding the vascular tissue in leaves. In C3 plants, photosynthesis occurs in both the BS and mesophyll cells, but the BS cells are the major sites of photosynthesis in C4 plants, whereas the mesophyll cells are only involved in CO2 fixation. Because C4 plants are more efficient photosynthetically, introduction of the C4 mechanism into C3 plants is considered a key strategy to improve crop yield. One prerequisite for such C3-to-C4 engineering is the ability to manipulate the number and physiology of the BS cells, but the molecular basis of BS cell-fate specification remains unclear. Here we report that mutations in three GRAS family transcription factors, SHORT-ROOT (SHR), SCARECROW (SCR) and SCARECROW-LIKE 23 (SCL23), affect BS cell fate in Arabidopsis thaliana. SCR and SCL23 are expressed specifically in the BS cells and act redundantly in BS cell-fate specification, but their expression pattern and function diverge at later stages of leaf development. Using ChIP-chip experiments and sugar assays, we show that SCR is primarily involved in sugar transport whereas SCL23 functions in mineral transport. SHR is also essential for BS cell-fate specification, but it is expressed in the central vascular tissue. However, the SHR protein moves into the BS cells, where it directly regulates SCR and SCL23 expression. SHR, SCR and SCL23 homologs are present in many plant species, suggesting that this developmental pathway for BS cell-fate specification is likely to be evolutionarily conserved.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/citologia , Diferenciação Celular/genética , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Genet Genomics ; 40(11): 565-73, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24238610

RESUMO

Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron homeostasis in strategy I plants. LeFRO1 is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1(MM), LeFRO1(Ailsa) and LeFRO1(Monita)) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1(Ailsa) > LeFRO1(MM) > LeFRO1(Monita)). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue Ile at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato.


Assuntos
FMN Redutase/química , FMN Redutase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Regulação da Expressão Gênica de Plantas
12.
Plant Physiol ; 159(1): 156-68, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22457425

RESUMO

The differentiation of stomata provides a convenient model for studying pattern formation in plant tissues. Stomata formation is induced by a set of basic helix-loop-helix transcription factors and inhibited by a signal transduction pathway initiated by TOO MANY MOUTHS (TMM) and ERECTA family (ERf) receptors. The formation of a proper stomata pattern is also dependent upon the restriction of symplastic movement of basic helix-loop-helix transcription factors into neighboring cells, especially in the backgrounds where the function of the TMM/ERf signaling pathway is compromised. Here, we describe a novel mutant of KOBITO1 in Arabidopsis (Arabidopsis thaliana). The kob1-3 mutation leads to the formation of stomata clusters in the erl1 erl2 background but not in the wild type. Cell-to-cell mobility assays demonstrated an increase in intercellular protein trafficking in kob1-3, including increased diffusion of SPEECHLESS, suggesting that the formation of stomata clusters is due to an escape of cell fate-specifying factors from stomatal lineage cells. While plasmodesmatal permeability is increased in kob1-3, we did not detect drastic changes in callose accumulation at the neck regions of the plasmodesmata. Previously, KOBITO1 has been proposed to function in cellulose biosynthesis. Our data demonstrate that disruption of cellulose biosynthesis in the erl1 erl2 background does not lead to the formation of stomata clusters, indicating that cellulose biosynthesis is not a major determining factor for regulating plasmodesmatal permeability. Analysis of KOBITO1 structure suggests that it is a glycosyltransferase-like protein. KOBITO1 might be involved in a carbohydrate metabolic pathway that is essential for both cellulose biosynthesis and the regulation of plasmodesmatal permeability.


Assuntos
Proteínas de Arabidopsis/metabolismo , Permeabilidade da Membrana Celular , Proteínas de Membrana/metabolismo , Estômatos de Plantas/fisiologia , Plasmodesmos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Metabolismo dos Carboidratos , Celulose/biossíntese , Celulose/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Clonagem Molecular , Cruzamentos Genéticos , Glucanos/genética , Glucanos/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Estômatos de Plantas/crescimento & desenvolvimento , Plasmodesmos/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
13.
Plant Physiol ; 158(4): 1769-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22312006

RESUMO

Sugar is essential for all cellular activities, but at high levels it inhibits growth and development. How plants balance the tradeoffs between the need for sugars and their growth inhibitory effects is poorly understood. SHORT-ROOT (SHR) and SCARECROW (SCR) are key regulators of stem cell renewal and radial patterning in the root of Arabidopsis (Arabidopsis thaliana). Recently, we identified direct targets of SHR at the genome scale. Intriguingly, among the top-ranked list, we found a number of genes that are involved in stress responses. By chromatin immunoprecipitation-polymerase chain reaction (PCR), we showed that SHR and SCR regulate a similar but not identical set of stress response genes. Consistent with this, scr and shr were found to be hypersensitive to abscisic acid (ABA). We further showed that both mutants were hypersensitive to high levels of glucose (Glc) but responded normally to high salinity and osmoticum. The endogenous levels of sucrose, Glc, and fructose were also elevated in shr and scr. Intriguingly, although shr had sugar content and developmental defects similar to those of scr, it was much less sensitive to Glc. Chromatin immunoprecipitation-PCR and reverse transcription-PCR assays as well as transgenic studies with an ABA-INSENSITIVE2 (ABI4)-ß-glucuronidase reporter construct revealed that in root, SCR, but not SHR, repressed ABI4 and ABI5 directly and specifically in the apical meristem. When combined with abi4, scr became much more tolerant of high Glc. Finally, transgenic plants expressing ABI4 under the control of the SCR promoter manifested a short-root phenotype. These results together suggest that SCR has a SHR-independent role in mitigating the sugar response and that this role of SCR is important for root growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Carboidratos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Homeostase/efeitos dos fármacos , Manitol/farmacologia , Meristema/efeitos dos fármacos , Meristema/genética , Meristema/crescimento & desenvolvimento , Mutação/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
14.
Ann Bot ; 105(5): 823-33, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20382967

RESUMO

BACKGROUND AND AIMS: Iron (Fe) is necessary for plant growth and development. Although it is well known that Fe deficiency causes chlorosis in plants, it remains unclear how the Fe homeostasis is regulated in mesophyll cells. The aim of this work was to identify a gene related to Fe homeostasis in leaves. METHODS: A spontaneous mutant irm1, which revealed typical Fe-deficiency chlorosis, was found from Arabidopsis thaliana. Using map-based cloning, the gene responsible for the altered phenotype of irm1 was cloned. The expression of genes was analysed using northern blot hybridization and multiplex RT-PCR analysis. Further, GUS staining with transgenic promoter-GUS lines and transient expression of the fusion protein with GFP were used for detecting the expression pattern of the gene in different tissues and at different developmental stages, and for the subcelluar localization of the gene product. KEY RESULTS: A point mutation from G to A at nucleotide 2317 of ClpC1 on chromosome V of Arabidopsis is responsible for the irm1 phenotype. The leaf chlorosis of the mutant irm1 and clpc1 (a T-DNA-inserted null mutant of ClpC1) could be converted to green by watering the soil with Fe solution. The expression intensity of ferric reductase FRO8 in irm1 and clpc1 was disordered (significantly higher than that of wild type). CONCLUSIONS: The glycine residue at amino acid 773 of ClpC1 is essential for its functions. In addition to its known functions reported previously, ClpC1 is involved in leaf Fe homeostasis, presumably via chloroplast translocation of some nuclear-encoded proteins which function in Fe transport.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ferro/metabolismo , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Folhas de Planta/genética , Plastídeos/genética , Mutação Puntual/genética , Mutação Puntual/fisiologia
15.
Cell Res ; 18(5): 566-76, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18332905

RESUMO

Thiamine (vitamin B(1)) is an essential compound for organisms. It contains a pyrimidine ring structure and a thiazole ring structure. These two moieties of thiamine are synthesized independently and then coupled together. Here we report the molecular characterization of AtTHIC, which is involved in thiamine biosynthesis in Arabidopsis. AtTHIC is similar to Escherichia coli ThiC, which is involved in pyrimidine biosynthesis in prokaryotes. Heterologous expression of AtTHIC could functionally complement the thiC knock-out mutant of E. coli. Downregulation of AtTHIC expression by T-DNA insertion at its promoter region resulted in a drastic reduction of thiamine content in plants and the knock-down mutant thic1 showed albino (white leaves) and lethal phenotypes under the normal culture conditions. The thic1 mutant could be rescued by supplementation of thiamine and its defect functions could be complemented by expression of AtTHIC cDNA. Transient expression analysis revealed that the AtTHIC protein targets plastids and chloroplasts. AtTHIC was strongly expressed in leaves, flowers and siliques and the transcription of AtTHIC was downregulated by extrinsic thiamine. In conclusion, AtTHIC is a gene involved in pyrimidine synthesis in the thiamine biosynthesis pathway of Arabidopsis, and our results provide some new clues for elucidating the pathway of thiamine biosynthesis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Tiamina/biossíntese , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Northern Blotting , Difosfatos/química , Difosfatos/metabolismo , Escherichia coli/genética , Teste de Complementação Genética , Proteínas Ferro-Enxofre/classificação , Proteínas Ferro-Enxofre/genética , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Tiamina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...