Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6688): 1215-1222, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484065

RESUMO

DNA replication is initiated at multiple loci to ensure timely duplication of eukaryotic genomes. Sister replication forks progress bidirectionally, and replication terminates when two convergent forks encounter one another. To investigate the coordination of replication forks, we developed a replication-associated in situ HiC method to capture chromatin interactions involving nascent DNA. We identify more than 2000 fountain-like structures of chromatin contacts in human and mouse genomes, indicative of coupling of DNA replication forks. Replication fork interaction not only occurs between sister forks but also involves forks from two distinct origins to predetermine replication termination. Termination-associated chromatin fountains are sensitive to replication stress and lead to coupled forks-associated genomic deletions in cancers. These findings reveal the spatial organization of DNA replication forks within the chromatin context.


Assuntos
Cromatina , Replicação do DNA , DNA , Genoma Humano , Animais , Humanos , Camundongos , Cromatina/química , DNA/química , DNA/genética , Conformação Proteica , Sequenciamento de Nucleotídeos em Larga Escala
2.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815873

RESUMO

Many cancers harbor homologous recombination defects (HRDs). A HRD is a therapeutic target that is being successfully utilized in treatment of breast/ovarian cancer via synthetic lethality. However, canonical HRD caused by BRCAness mutations do not prevail in liver cancer. Here we report a subtype of HRD caused by the perturbation of a proteasome variant (CDW19S) in hepatitis B virus-bearing (HBV-bearing) cells. This amalgamate protein complex contained the 19S proteasome decorated with CRL4WDR70 ubiquitin ligase, and assembled at broken chromatin in a PSMD4Rpn10- and ATM-MDC1-RNF8-dependent manner. CDW19S promoted DNA end processing via segregated modules that promote nuclease activities of MRE11 and EXO1. Contrarily, a proteasomal component, ADRM1Rpn13, inhibited resection and was removed by CRL4WDR70-catalyzed ubiquitination upon commitment of extensive resection. HBx interfered with ADRM1Rpn13 degradation, leading to the imposition of ADRM1Rpn13-dependent resection barrier and consequent viral HRD subtype distinguishable from that caused by BRCA1 defect. Finally, we demonstrated that viral HRD in HBV-associated hepatocellular carcinoma can be exploited to restrict tumor progression. Our work clarifies the underlying mechanism of a virus-induced HRD subtype.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Neoplasias Hepáticas/genética , Transativadores/genética , Transativadores/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética , Hepatite B/genética , Recombinação Homóloga , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
Genome Biol ; 24(1): 155, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381036

RESUMO

BACKGROUND: The ring-shaped cohesin complex is an important factor for the formation of chromatin loops and topologically associating domains (TADs) by loop extrusion. However, the regulation of association between cohesin and chromatin is poorly understood. In this study, we use super-resolution imaging to reveal the unique role of cohesin subunit RAD21 in cohesin loading and chromatin structure regulation. RESULTS: We directly visualize that up-regulation of RAD21 leads to excessive chromatin loop extrusion into a vermicelli-like morphology with RAD21 clustered into foci and excessively loaded cohesin bow-tying a TAD to form a beads-on-a-string-type pattern. In contrast, up-regulation of the other four cohesin subunits results in even distributions. Mechanistically, we identify that the essential role of RAD21 is attributed to the RAD21-loader interaction, which facilitates the cohesin loading process rather than increasing the abundance of cohesin complex upon up-regulation of RAD21. Furthermore, Hi-C and genomic analysis reveal how RAD21 up-regulation affects genome-wide higher-order chromatin structure. Accumulated contacts are shown at TAD corners while inter-TAD interactions increase after vermicelli formation. Importantly, we find that in breast cancer cells, the expression of RAD21 is aberrantly high with poor patient survival and RAD21 forms beads in the nucleus. Up-regulated RAD21 in HeLa cells leads to compartment switching and up-regulation of cancer-related genes. CONCLUSIONS: Our results provide key insights into the molecular mechanism by which RAD21 facilitates the cohesin loading process and provide an explanation to how cohesin and loader work cooperatively to promote chromatin extrusion, which has important implications in construction of three-dimensional genome organization.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Humanos , Células HeLa , Proteínas de Ciclo Celular/genética , Cromatina , Proteínas de Ligação a DNA , Coesinas
4.
DNA Repair (Amst) ; 120: 103418, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265398

RESUMO

Genomic DNA in yeast and human cells harbors approximately 2000 and a few million DNA replication barriers, respectively. These barriers result in frequent replication fork stalling, causing tremendous stress on DNA replication. Stalled replication forks are unstable and tend to collapse as a result of the intrinsic instability of replisomes. Checkpoint and chromsfork (chromatin compaction stabilizes stalling replication forks) controls have been shown to be essential for stabilizing stalled replication forks. However, their underlying regulatory mechanisms are only partially understood. To give some perspectives, we must know the current situation in the field. Thus, this review succinctly goes through our current understanding of replication barriers, replisomes, replication forks, types of fork collapse, checkpoint, and chromsfork control. We also give our views on some controversial issues in this field, and hopefully, they will be helpful for future studies. In the final section on perspectives, some key questions are outlined. Due to space limitations, many excellent works are not discussed here, and readers are referred to other excellent review articles.


Assuntos
Replicação do DNA , Células Eucarióticas , Humanos , Ciclo Celular , Saccharomyces cerevisiae/genética , Cromatina
5.
Yi Chuan ; 44(7): 609-617, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858772

RESUMO

Mono-ubiquitination of histone H2B plays a critical role in the regulation of gene transcription, DNA replication, and DNA damage repair. In Schizosaccharomyces pombe, Brl2 is an E3 ubiquitin ligase and required for the ubiquitination of H2B at lysine residue 119. Currently, there are few studies related to the function of Brl2 in DNA damage repair. Using camptothecin (CPT) to induce DNA double-strand breaks (DSBs) in S. pombe, we investigated the effect of Brl2 on DSB repair, and found that brl2-null mutants showed greater sensitivity to CPT when compared with wild-type (WT) cells, as well as having a drastically reduced spontaneous recombinant frequency. The fluorescent analysis demonstrated that Brl2 was co-localized with the recombination factor Rad52 at DSBs. Moreover, Brl2 promoted the recruitment of Rad52 to DSBs. Under CPT-induced DSBs, Brl2 was phosphorylated. These findings indicate that Brl2 plays a critical role in DNA homologous recombination and its mediated repair of DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Ubiquitina , Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
Trends Cell Biol ; 32(12): 988-995, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35811227

RESUMO

A recent study showed that RNA transcription is directly involved in DNA homologous recombination (HR). The first step in HR is end resection, which degrades a few kilobases or more from the 5'-end strand at DNA breaks, but the 3'-end strand remains strictly intact. Such protection of the 3'-end strand is achieved by the transient formation of an RNA-DNA hybrid structure. The RNA strand in the hybrid is newly synthesized by RNA polymerase III. The revelation of the existence of an RNA-DNA hybrid intermediate should further help resolve several long-standing questions of HR. In this article, we also put forward our views on some controversial issues related to RNA-DNA hybrids, RNA polymerases, and the protection of 3'-end strands.


Assuntos
Quebras de DNA de Cadeia Dupla , RNA Polimerase III , Humanos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Recombinação Homóloga , DNA/genética , DNA/metabolismo , Reparo do DNA , RNA/metabolismo
7.
Nat Commun ; 13(1): 2861, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606358

RESUMO

The atypical nuclease ENDOD1 functions with cGAS-STING in innate immunity. Here we identify a previously uncharacterized ENDOD1 function in DNA repair. ENDOD1 is enriched in the nucleus following H2O2 treatment and ENDOD1-/- cells show increased PARP chromatin-association. Loss of ENDOD1 function is synthetic lethal with homologous recombination defects, with affected cells accumulating DNA double strand breaks. Remarkably, we also uncover an additional synthetic lethality between ENDOD1 and p53. ENDOD1 depletion in TP53 mutated tumour cells, or p53 depletion in ENDOD1-/- cells, results in rapid single stranded DNA accumulation and cell death. Because TP53 is mutated in ~50% of tumours, ENDOD1 has potential as a wide-spectrum target for synthetic lethal treatments. To support this we demonstrate that systemic knockdown of mouse EndoD1 is well tolerated and whole-animal siRNA against human ENDOD1 restrains TP53 mutated tumour progression in xenograft models. These data identify ENDOD1 as a potential cancer-specific target for SL drug discovery.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Animais , Reparo do DNA , Humanos , Peróxido de Hidrogênio , Camundongos , Neoplasias/patologia , Mutações Sintéticas Letais/genética , Proteína Supressora de Tumor p53/genética
8.
Mol Cell Oncol ; 8(4): 1935173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616870

RESUMO

End resection excises several thousand bases from the 5'-ended strand during DNA double-strand break repair, creating 3'-end single-stranded DNA overhangs. This overhang requires strict protection from DNA2 or other nucleases digestion. A recent finding showed that the 3'-end overhangs are protected by the transient formation of RNA-DNA hybrids, and RNA polymerase III is an essential factor for homologous recombination.

9.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34108240

RESUMO

DNA replication is dramatically slowed down under replication stress. The regulation of replication speed is a conserved response in eukaryotes and, in fission yeast, requires the checkpoint kinases Rad3ATR and Cds1Chk2 However, the underlying mechanism of this checkpoint regulation remains unresolved. Here, we report that the Rad3ATR-Cds1Chk2 checkpoint directly targets the Cdc45-MCM-GINS (CMG) replicative helicase under replication stress. When replication forks stall, the Cds1Chk2 kinase directly phosphorylates Cdc45 on the S275, S322, and S397 residues, which significantly reduces CMG helicase activity. Furthermore, in cds1Chk2 -mutated cells, the CMG helicase and DNA polymerases are physically separated, potentially disrupting replisomes and collapsing replication forks. This study demonstrates that the intra-S phase checkpoint directly regulates replication elongation, reduces CMG helicase processivity, prevents CMG helicase delinking from DNA polymerases, and therefore helps preserve the integrity of stalled replisomes and replication forks.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Complexos Multienzimáticos , Pontos de Checagem da Fase S do Ciclo Celular , Schizosaccharomyces/metabolismo , Alelos , DNA Helicases/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Hidroxiureia/farmacologia , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Complexos Multiproteicos/metabolismo , Mutação/genética , Fosforilação/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Cell ; 184(5): 1314-1329.e10, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626331

RESUMO

End resection in homologous recombination (HR) and HR-mediated repair of DNA double-strand breaks (DSBs) removes several kilobases from 5' strands of DSBs, but 3' strands are exempted from degradation. The mechanism by which the 3' overhangs are protected has not been determined. Here, we established that the protection of 3' overhangs is achieved through the transient formation of RNA-DNA hybrids. The DNA strand in the hybrids is the 3' ssDNA overhang, while the RNA strand is newly synthesized. RNA polymerase III (RNAPIII) is responsible for synthesizing the RNA strand. Furthermore, RNAPIII is actively recruited to DSBs by the MRN complex. CtIP and MRN nuclease activity is required for initiating the RNAPIII-mediated RNA synthesis at DSBs. A reduced level of RNAPIII suppressed HR, and genetic loss > 30 bp increased at DSBs. Thus, RNAPIII is an essential HR factor, and the RNA-DNA hybrid is an essential repair intermediate for protecting the 3' overhangs in DSB repair.


Assuntos
RNA Polimerase III/metabolismo , Reparo de DNA por Recombinação , Ciclo Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/genética , Células HEK293 , Humanos , Proteína Homóloga a MRE11/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Hibridização de Ácido Nucleico , RNA/química
11.
Proc Natl Acad Sci U S A ; 116(29): 14563-14572, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31262821

RESUMO

DNA replication forks in eukaryotic cells stall at a variety of replication barriers. Stalling forks require strict cellular regulations to prevent fork collapse. However, the mechanism underlying these cellular regulations is poorly understood. In this study, a cellular mechanism was uncovered that regulates chromatin structures to stabilize stalling forks. When replication forks stall, H2BK33, a newly identified acetylation site, is deacetylated and H3K9 trimethylated in the nucleosomes surrounding stalling forks, which results in chromatin compaction around forks. Acetylation-mimic H2BK33Q and its deacetylase clr6-1 mutations compromise this fork stalling-induced chromatin compaction, cause physical separation of replicative helicase and DNA polymerases, and significantly increase the frequency of stalling fork collapse. Furthermore, this fork stalling-induced H2BK33 deacetylation is independent of checkpoint. In summary, these results suggest that eukaryotic cells have developed a cellular mechanism that stabilizes stalling forks by targeting nucleosomes and inducing chromatin compaction around stalling forks. This mechanism is named the "Chromsfork" control: Chromatin Compaction Stabilizes Stalling Replication Forks.


Assuntos
Replicação do DNA , Nucleossomos/metabolismo , Schizosaccharomyces/genética , Acetilação , DNA Helicases/metabolismo , Metilação de DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Código das Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Pontos de Checagem da Fase S do Ciclo Celular , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
Mol Cell Biol ; 38(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29661922

RESUMO

RNA polymerase II (RNAPII) is one of the central enzymes in cell growth and organizational development. It is a large macromolecular complex consisting of 12 subunits. Relative to the clear definition of RNAPII structure and biological function, the molecular mechanism of how RNAPII is assembled is poorly understood, and thus the key assembly factors acting for the assembly of RNAPII remain elusive. In this study, we identified two factors, Gpn2 and Rba50, that directly participate in the assembly of RNAPII. Gpn2 and Rba50 were demonstrated to interact with Rpb12 and Rpb3, respectively. An interaction between Gpn2 and Rba50 was also demonstrated. When Gpn2 and Rba50 are functionally defective, the assembly of the Rpb3 subcomplex is disrupted, leading to defects in the assembly of RNAPII. Based on these results, we conclude that Gpn2 and Rba50 directly participate in the assembly of the Rpb3 subcomplex and subsequently the biogenesis of RNAPII.


Assuntos
RNA Polimerase II/metabolismo , Sequência de Aminoácidos , Sequência Conservada , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Multimerização Proteica , Subunidades Proteicas , RNA Polimerase II/química , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia de Sequência de Aminoácidos
13.
J Biol Chem ; 292(12): 4777-4788, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28159842

RESUMO

During DNA replication in eukaryotic cells, short single-stranded DNA segments known as Okazaki fragments are first synthesized on the lagging strand. The Okazaki fragments originate from ∼35-nucleotide-long RNA-DNA primers. After Okazaki fragment synthesis, these primers must be removed to allow fragment joining into a continuous lagging strand. To date, the models of enzymatic machinery that removes the RNA-DNA primers have come almost exclusively from biochemical reconstitution studies and some genetic interaction assays, and there is little direct evidence to confirm these models. One obstacle to elucidating Okazaki fragment processing has been the lack of methods that can directly examine primer removal in vivo In this study, we developed an electron microscopy assay that can visualize nucleotide flap structures on DNA replication forks in fission yeast (Schizosaccharomyces pombe). With this assay, we first demonstrated the generation of flap structures during Okazaki fragment processing in vivo The mean and median lengths of the flaps in wild-type cells were ∼51 and ∼41 nucleotides, respectively. We also used yeast mutants to investigate the impact of deleting key DNA replication nucleases on these flap structures. Our results provided direct in vivo evidence for a previously proposed flap cleavage pathway and the critical function of Dna2 and Fen1 in cleaving these flaps. In addition, we found evidence for another previously proposed exonucleolytic pathway involving RNA-DNA primer digestion by exonucleases RNase H2 and Exo1. Taken together, our observations suggest a dual mechanism for Okazaki fragment maturation in lagging strand synthesis and establish a new strategy for interrogation of this fascinating process.


Assuntos
Primers do DNA/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases Flap/metabolismo , RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Transdução de Sinais , DNA/análise , DNA/genética , DNA/ultraestrutura , Primers do DNA/análise , Primers do DNA/genética , Replicação do DNA , DNA Fúngico/análise , DNA Fúngico/genética , DNA Fúngico/metabolismo , Endodesoxirribonucleases/análise , Endodesoxirribonucleases/genética , Endonucleases Flap/análise , Endonucleases Flap/genética , Mutação , RNA/análise , RNA/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/análise , Proteínas de Schizosaccharomyces pombe/genética
14.
J Biol Chem ; 292(15): 6056-6075, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223353

RESUMO

A central step in the initiation of chromosomal DNA replication in eukaryotes is the assembly of pre-replicative complex (pre-RC) at late M and early G1 phase of the cell cycles. Since 1973, four proteins or protein complexes, including cell division control protein 6 (Cdc6)/Cdc18, minichromosome maintenance protein complex, origin recognition complex (ORC), and Cdt1, are known components of the pre-RC. Previously, we reported that a non-ORC protein binds to the essential element Δ9 of the Schizosaccharomyces pombe DNA-replication origin ARS3001. In this study, we identified that the non-ORC protein is Sap1. Like ORC, Sap1 binds to DNA origins during cell growth cycles. But unlike ORC, which binds to asymmetric AT-rich sequences through its nine AT-hook motifs, Sap1 preferentially binds to a DNA sequence of 5'-(A/T) n (C/G)(A/T)9-10(G/C)(A/T) n -3' (n ≥ 1). We also found that Sap1 and ORC physically interact. We further demonstrated that Sap1 is required for the assembly of the pre-RC because of its essential role in recruiting Cdc18 to DNA origins. Thus, we conclude that Sap1 is a replication-initiation factor that directly participates in the assembly of the pre-RC. DNA-replication origins in fission yeast are defined by possessing two essential elements with one bound by ORC and the other by Sap1.


Assuntos
Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Motivos de Nucleotídeos/fisiologia , Origem de Replicação/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
15.
J Biol Chem ; 291(48): 24961-24973, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27729451

RESUMO

Double-stranded DNA breaks (DSBs) are highly detrimental DNA lesions, which may be repaired by the homologous recombination-mediated repair pathway. The 5' to 3' direction of long-range end resection on one DNA strand, in which 3'-single-stranded DNA overhangs are created from broken DNA ends, is an essential step in this pathway. Dna2 has been demonstrated as an essential nuclease in this event, but the molecular mechanism of how Dna2 is recruited to DNA break sites in vivo has not been elucidated. In this study, a novel recombination factor called Cdc24 was identified in fission yeast. We demonstrated that Cdc24 localizes to DNA break sites during the repair of DNA breaks and is an essential factor in long-range end resection. We also determined that Cdc24 plays a direct role in recruiting Dna2 to DNA break sites through its interaction with Dna2 and replication protein A (RPA). Further, this study revealed that RPA acts as the foundation for assembling the machinery for long-range end resection by its essential role in recruiting Cdc24 and Dna2 to DNA break sites. These results define Cdc24 as an essential factor for long-range end resection in the repair of DSBs, opening the door for further investigations into the enzymes involved in long-range end resection for DSB repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , DNA Fúngico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , DNA Fúngico/genética , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
16.
Nat Commun ; 7: 11364, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27098497

RESUMO

Double-strand breaks repaired by homologous recombination (HR) are first resected to form single-stranded DNA, which binds replication protein A (RPA). RPA attracts mediators that load the Rad51 filament to promote strand invasion, the defining feature of HR. How the resection machinery navigates nucleosome-packaged DNA is poorly understood. Here we report that in Schizosaccharomyces pombe a conserved DDB1-CUL4-associated factor (DCAF), Wdr70, is recruited to DSBs as part of the Cullin4-DDB1 ubiquitin ligase (CRL4(Wdr70)) and stimulates distal H2B lysine 119 mono-ubiquitination (uH2B). Wdr70 deletion, or uH2B loss, results in increased loading of the checkpoint adaptor and resection inhibitor Crb2(53BP1), decreased Exo1 association and delayed resection. Wdr70 is dispensable for resection upon Crb2(53BP1) loss, or when the Set9 methyltransferase that creates docking sites for Crb2 is deleted. Finally, we establish that this histone regulatory cascade similarly controls DSB resection in human cells.


Assuntos
DNA/genética , Exodesoxirribonucleases/genética , Reparo de DNA por Recombinação , Schizosaccharomyces/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Ubiquitina-Proteína Ligases/deficiência , Ubiquitinação
17.
Sci China Life Sci ; 57(5): 482-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24699916

RESUMO

Chromosomal DNA replication is one of the central biological events occurring inside cells. Due to its large size, the replication of genomic DNA in eukaryotes initiates at hundreds to tens of thousands of sites called DNA origins so that the replication could be completed in a limited time. Further, eukaryotic DNA replication is sophisticatedly regulated, and this regulation guarantees that each origin fires once per S phase and each segment of DNA gets duplication also once per cell cycle. The first step of replication initiation is the assembly of pre-replication complex (pre-RC). Since 1973, four proteins, Cdc6/Cdc18, MCM, ORC and Cdt1, have been extensively studied and proved to be pre-RC components. Recently, a novel pre-RC component called Sap1/Girdin was identified. Sap1/Girdin is required for loading Cdc18/Cdc6 to origins for pre-RC assembly in the fission yeast and human cells, respectively. At the transition of G1 to S phase, pre-RC is activated by the two kinases, cyclindependent kinase (CDK) and Dbf4-dependent kinase (DDK), and subsequently, RPA, primase-polα, PCNA, topoisomerase, Cdc45, polδ, and polɛ are recruited to DNA origins for creating two bi-directional replication forks and initiating DNA replication. As replication forks move along chromatin DNA, they frequently stall due to the presence of a great number of replication barriers on chromatin DNA, such as secondary DNA structures, protein/DNA complexes, DNA lesions, gene transcription. Stalled forks must require checkpoint regulation for their stabilization. Otherwise, stalled forks will collapse, which results in incomplete DNA replication and genomic instability. This short review gives a concise introduction regarding the current understanding of replication initiation and replication fork stabilization.


Assuntos
Replicação do DNA/fisiologia , Replicação do DNA/genética , Células Eucarióticas/metabolismo , Humanos , Modelos Biológicos , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/genética , Pontos de Checagem da Fase S do Ciclo Celular/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
18.
Cell ; 149(6): 1221-32, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682245

RESUMO

When replication forks stall at damaged bases or upon nucleotide depletion, the intra-S phase checkpoint ensures they are stabilized and can restart. In intra-S checkpoint-deficient budding yeast, stalling forks collapse, and ∼10% form pathogenic chicken foot structures, contributing to incomplete replication and cell death (Lopes et al., 2001; Sogo et al., 2002; Tercero and Diffley, 2001). Using fission yeast, we report that the Cds1(Chk2) effector kinase targets Dna2 on S220 to regulate, both in vivo and in vitro, Dna2 association with stalled replication forks in chromatin. We demonstrate that Dna2-S220 phosphorylation and the nuclease activity of Dna2 are required to prevent fork reversal. Consistent with this, Dna2 can efficiently cleave obligate precursors of fork regression-regressed leading or lagging strands-on model replication forks. We propose that Dna2 cleavage of regressed nascent strands prevents fork reversal and thus stabilizes stalled forks to maintain genome stability during replication stress.


Assuntos
Replicação do DNA , Endonucleases Flap/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Quinase do Ponto de Checagem 2 , Epistasia Genética , Instabilidade Genômica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/genética
19.
Acta Biochim Biophys Sin (Shanghai) ; 42(7): 433-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20705581

RESUMO

Chromosomal DNA replication in eukaryotic cells is highly complicated and sophisticatedly regulated. Owing to its large size, a typical eukaryotic genome contains hundreds to tens of thousands of initiation sites called DNA replication origins where DNA synthesis takes place. Multiple initiation sites remove the constraint of a genome size because only a certain amount of DNA can be replicated from a single origin in a limited time. The activation of these multiple origins must be coordinated so that each segment of chromosomal DNA is precisely duplicated only once per cell cycle. Although DNA replication is a vital process for cell growth and its mechanism is highly conserved, recent studies also reveal significant diversity in origin structure, assembly of pre-replication complex (pre-RC) and regulation of replication initiation along evolutionary lines. The DNA replication origins in the fission yeast Schizosaccharomyces pombe are found to contain a second essential element that is bound by Sap1 protein besides the essential origin recognition complex-binding site. Sap1 is recently demonstrated to be a novel replication initiation protein that plays an essential role in loading the initiation protein Cdc18 to origins and thus directly participates in pre-RC formation. In this review, we summarize the recent advance in understanding how DNA replication origins are organized, how pre-RC is assembled and how DNA replication is initiated and regulated in yeast and metazoans.


Assuntos
Replicação do DNA , DNA/metabolismo , Células Eucarióticas/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Animais , Ciclo Celular , Modelos Biológicos , Complexo de Reconhecimento de Origem/genética , Ligação Proteica
20.
EMBO J ; 22(13): 3441-50, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12840006

RESUMO

Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Schizosaccharomyces/genética , Trifosfato de Adenosina/metabolismo , Animais , Hidrólise , Complexo de Reconhecimento de Origem , Ligação Proteica , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...