Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(1): e1009937, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100259

RESUMO

Mammalian hearing involves the mechanoelectrical transduction (MET) of sound-induced fluid waves in the cochlea. Essential to this process are the specialised sensory cochlear cells, the inner (IHCs) and outer hair cells (OHCs). While genetic hearing loss is highly heterogeneous, understanding the requirement of each gene will lead to a better understanding of the molecular basis of hearing and also to therapeutic opportunities for deafness. The Neuroplastin (Nptn) gene, which encodes two protein isoforms Np55 and Np65, is required for hearing, and homozygous loss-of-function mutations that affect both isoforms lead to profound deafness in mice. Here we have utilised several distinct mouse models to elaborate upon the spatial, temporal, and functional requirement of Nptn for hearing. While we demonstrate that both Np55 and Np65 are present in cochlear cells, characterisation of a Np65-specific mouse knockout shows normal hearing thresholds indicating that Np65 is functionally redundant for hearing. In contrast, we find that Nptn-knockout mice have significantly reduced maximal MET currents and MET channel open probabilities in mature OHCs, with both OHCs and IHCs also failing to develop fully mature basolateral currents. Furthermore, comparing the hearing thresholds and IHC synapse structure of Nptn-knockout mice with those of mice that lack Nptn only in IHCs and OHCs shows that the majority of the auditory deficit is explained by hair cell dysfunction, with abnormal afferent synapses contributing only a small proportion of the hearing loss. Finally, we show that continued expression of Neuroplastin in OHCs of adult mice is required for membrane localisation of Plasma Membrane Ca2+ ATPase 2 (PMCA2), which is essential for hearing function. Moreover, Nptn haploinsufficiency phenocopies Atp2b2 (encodes PMCA2) mutations, with heterozygous Nptn-knockout mice exhibiting hearing loss through genetic interaction with the Cdh23ahl allele. Together, our findings provide further insight to the functional requirement of Neuroplastin for mammalian hearing.


Assuntos
Caderinas/genética , Células Ciliadas Auditivas Internas/fisiologia , Audição/genética , Glicoproteínas de Membrana/genética , Isoformas de Proteínas/genética , Animais , Mutação com Perda de Função , Camundongos , Camundongos Knockout , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
2.
Analyst ; 146(13): 4188-4194, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34057168

RESUMO

Metal-organic frameworks (MOFs) as a peroxidase mimic have been integrated with glucose oxidase (GOx) to achieve one-step glucose detection. However, limited by the loading amount of GOx, the performances of the developed glucose sensing assays still remain to be further improved to meet sensing requirements in diverse biological samples. Herein, with Fe3+ as the metal ion and 2-amino-benzenedicarboxylic acid as a ligand, a fluorescent Fe-based organic framework (NH2-MIL-101) with peroxidase-like activity was synthesized. Due to the large specific surface area (791.75 m2 g-1), 68 µg mg-1 GOx could be immobilized through the amidation coupling reaction, and the product was designated GOx@NH2-MIL-101. With OPD as the substrate, Gox@NH2-MIL-101 achieved highly efficient biomimetic cascade catalysis for one-step glucose detection through an inner filter effect: upon reacting with glucose, GOx@NH2-MIL-101 catalytically oxidized glucose using dissolved O2, and the produced H2O2 concurrently oxidized o-phenylenediamine (OPD) to oxidized OPD (oxOPD), accompanied by the fluorescence of GOx@NH2-MIL-101 at 456 nm being quenched and that of oxOPD at 565 nm being enhanced. With the fluorescent ratio F565/F456 used as a readout signal, a wide linear range of 0.1-600 µM was obtained, and the detection limit was 0.0428 µM. Based on the excellent selectivity and high stability of GOx@NH2-MIL-101, the developed assay was successfully applied to glucose detection in human serum and saliva, presenting potential applications in diverse biological samples and even medical diagnosis.


Assuntos
Glucose Oxidase , Estruturas Metalorgânicas , Biomimética , Glucose , Humanos , Peróxido de Hidrogênio
3.
Analyst ; 146(1): 207-212, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33089838

RESUMO

Identifying the species and concentrations of antioxidants is really important because antioxidants play important roles in various biological processes and numerous diseases. Compared with an individual sensor detecting a single antioxidant with limited specificity, a sensor array could simultaneously identify various antioxidants, in which 3-5 types of nanomaterials with peroxidase-like activity are absolutely necessary. Herein, as a single-atom nanozyme, Fe-N/C with oxidase-mimicking activity was applied to construct a triple-channel colorimetric sensor array: (1) Fe-N/C catalytically oxidized three substrates 3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and o-phenylenediamine (OPD) to produce blue oxidized TMB (oxTMB), green oxidized ABTS (oxABTS) and yellow oxidized OPD (oxOPD), respectively; (2) with oxTMB, oxABTS and oxOPD as three sensing channels, a colorimetric sensor array was constructed for simultaneously discriminating glutathione (GSH), l-cysteine (l-Cys), ascorbic acid (AA), uric acid (UA), and melatonin (MT), even quantifying concentrations (with GSH as a model analyst). The performance of the sensor array was validated through accurately identifying 15 blind samples containing GSH, l-Cys, AA, UA and MT in buffer solution and human serum samples, and also in binary and ternary mixtures. This work proved that fabricating a single nanozyme-based sensor array was a simplified and reliable strategy for simultaneously probing multiple antioxidants.


Assuntos
Antioxidantes , Colorimetria , Ácido Ascórbico , Glutationa , Humanos , Oxirredução
4.
Micromachines (Basel) ; 10(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554250

RESUMO

As a new energy technology, the fuel cell has developed rapidly, and its performance has been continuously improved. Fuel cell stacks composed of multiple single cells are gradually being used in portable electronic products. Since the performance of fuel cells cannot be optimal at room temperature, it is critical to research cell temperature characteristics and heat distributions in applications. In this paper, the effects of temperature and charge transfer coefficient and the relationship between exchange current density and output voltage were analyzed by the mathematical model of direct methanol fuel cells. Moreover, to optimize the thermal layout of the fuel cell stack in the printed circuit board (PCB) substrate, the idea of a fuel cell as a device was proposed innovatively, and the corresponding thermal optimization strategy was analyzed. A novel particle swarm optimization algorithm was used to detect the optimal layout of fuel cells of different specifications on the same substrate. The three-dimensional thermal simulation model was used to obtain the temperature data and verify the optimization results.

5.
Micromachines (Basel) ; 10(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146378

RESUMO

To achieve a self-adaptive fuel supply mechanism for the micro direct methanol fuel cell (µDMFC), we designed and developed a thermal control microvalve channel structure, where we considered the relationship between the temperature characteristics, viscosity, and velocity of the methanol solution. Both the single channel model and three-dimensional cell model for the microvalve were established using the COMSOL Multiphysics program. The results demonstrated that in the microvalve channel, the viscosity of the solution decreased, and the flow rate at the microvalve outlet increased with the increasing temperature. Meanwhile, the geometry structure of the microvalve single channel was optimized, so that the effect of the control speed of the microvalve under temperature changes became more prominent. In the full-cell model analysis, a low-velocity methanol solution at the low current density can significantly inhibit methanol crossover. At the high current densities, an increase in the methanol solution flow rate was beneficial to an increase in the cell reaction output. The µDMFC was fabricated and the experiment was conducted, where the results showed that the power density of the self-adaptive cell reached a maximum value of 16.56 mW/cm2 in 2 M methanol solution, which was up to 7% better than conventional cell performance. The proposed microvalve structure can effectively improve the output power of the µDMFC during the whole reaction process, and it may improve the stability of the cell operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...