Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(7): 8249-8259, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31999094

RESUMO

Perovskite solar cells (PSCs) are susceptible to intrinsic structural instability associated with the presence of inorganic halide anions and organic cation vacancies, thus leading to the deterioration or even premature failure of devices. Herein, we develop an efficient strategy using super-halogen BH4- substitution to simultaneously immobilize methylammonium and substitute iodide vacancy for high-performance PSCs based on the dihydrogen bonding interactions. The introduced super-halogen BH4- groups not only significantly reduce the vacancy density but also effectively inhibit the decomposition of the CH3NH3+ group by forming perovskite CH3NH3PbI3-x(BH4-)x. The power conversion efficiency (PCE) of the assembled mesoporous devices is remarkably promoted from 18.43 to 21.10%, accompanied by significant increase of both Jsc and Voc without obvious hysteresis. The superior PSCs can retain 90 and 80% of their initial PCE even after being stored for 1200 h under environmental conditions (50 ± 10% RH) and 240 h at 85 °C in the dark, respectively. Moreover, it delivers excellent optical stability under ultraviolet illumination. This work provides an avenue to improve both the long-term stability and photovoltaic performance of PSCs.

2.
Nanoscale Adv ; 2(2): 833-843, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36133221

RESUMO

As the essential component of a quantum dot-sensitized solar cell (QDSC), the counter electrode (CE) plays an important role in electron transfer and catalytic reduction acquisition throughout the device. A novel route to design multilayer functionalized Cu2S thin films as CEs with high catalytic activity and enhanced stability, as well as large specific surface area and high conductivity, is presented. Firstly, Mo-based films were prepared by magnetron sputtering on a glass substrate, and then porous CuZnMo conductive films were formed by etching with hydrochloric acid. Secondly, indium tin oxide (ITO) film was sputtered onto the porous structure to act as a protective layer, and a porous ITO/CuZnMo structured film was obtained after optimization. In the third step, multilayer Cu(x)/ITO/CuZnMo structured films were acquired by sputtering Cu films. Finally, multilayer Cu2S(t)/ITO/CuZnMo functionalized film CEs were obtained via in situ sulfidation of sputtered Cu films. The functions of conduction and resistance to electrolyte corrosion were produced and enhanced by annealing an ITO layer at high temperature prior to Cu deposition, while catalytic activity enabled by Cu2S was realized from Cu film sulfidation. The multilayer Cu2S/ITO(500 °C)/CuZnMo functionalized films exhibit high catalytic activity and enhanced stability for resistance to electrolyte corrosion. Taking multilayer Cu2S/ITO(500 °C)/CuZnMo films as CEs, the QDSCs demonstrated good stability of power conversion efficiency (PCE) after 500 h of irradiation, from an initial 4.21% to a final 4.00%. Furthermore, the thickness of Cu2S film modulated by the duration of Cu sputtering was investigated. It was found that the QDSCs using multilayer Cu2S(40 min)/ITO/CuZnMo functionalized film with a Cu2S thickness of 1.2 µm as CE exhibit the best performance, and the R ct value was 0.57 Ω. The best photovoltaic performance with a PCE of 5.21% (V oc = 533.1 mV, J sc = 18.80 mA cm-2, FF = 52.84%) was achieved under AM 1.5 radiation with an incident power of 100 mW cm-2. This design of a multilayer functionalized CE introduces potential alternatives to the common brass-based CE for long-term QDSCs with high performance.

3.
ACS Appl Mater Interfaces ; 11(42): 38779-38788, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31564106

RESUMO

The most critical reason for limiting the extensive study and promotion of MA-based perovskites is their intrinsic instability when compared to FA-based perovskites. Therefore, it is necessary to develop a simple and effective method to improve their intrinsic stability. Herein, the 1,1,1-trimethylhydrazinium cation (TMH+) was first introduced into MAPbI3 to fabricate high-performance mixed-cation perovskite solar cells (PSCs) with an enhanced power conversion efficiency (PCE) of 19.86%, which benefits by the improved crystallization and morphology of films. On the one hand, the slightly large size of TMH+ is complementary to the low tolerance factor of MAPbI3 and then enhances the structure stability. On the other hand, the presence of methyl groups in TMH+ is beneficial to promote the hydrophobicity of MA-based perovskite. More importantly, the hydrazinium group can effectively inhibit the production of Pb0 in perovskites, which is the initial stage of degradation. As a result, the intrinsic stability of PSCs has been observably boosted. After aging at 45 ± 5% RH for 1800 h and 85 °C for 200 h, the unencapsulated PSCs retained 77 and 79% of initial PCE, respectively. This work provides a new design for the selection of suitable cations with special structures and chemical groups to enhance the moisture resistance and intrinsic stability of MA-based perovskite at the source of degradation.

4.
J Am Chem Soc ; 141(27): 10722-10728, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251057

RESUMO

The correlation between lattice oxygen (O) binding energy and O oxidation activity imposes a fundamental limit in developing oxide catalysts, simultaneously meeting the stringent thermal stability and catalytic activity standards for complete oxidation reactions under harsh conditions. Typically, strong O binding indicates a stable surface structure, but low O oxidation activity, and vice versa. Using nitric oxide (NO) catalytic oxidation as a model reaction, we demonstrate that this conflicting correlation can be avoided by cooperative lattice oxygen redox on SmMn2O5 mullite oxides, leading to stable and active oxide surface structures. The strongly bound neighboring lattice oxygen pair cooperates in NO oxidation to form bridging nitrate (NO3-) intermediates, which can facilely transform into monodentate NO3- by a concerted rotation with simultaneous O2 adsorption onto the resulting oxygen vacancy. Subsequently, monodentate NO3- species decompose to NO2 to restore one of the lattice oxygen atoms that act as a reversible redox center, and the vacancy can easily activate O2 to replenish the consumed one. This discovery not only provides insights into the cooperative reaction mechanism but also aids the design of oxidation catalysts with the strong O binding region, offering strong activation of O2, high O activity, and high thermal stability in harsh conditions.

5.
Mater Sci Eng C Mater Biol Appl ; 92: 1075-1091, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184730

RESUMO

The sister technologies, electrospinning and electrospraying provide a facile and universal synthesis method for the continuous preparation of nanostructured materials. Through adjusting the synthesis parameters, rich electrospun and electrosprayed nanomaterials, scaffolds, membranes with tunable composition (inorganic, polymeric, hybrid, etc.), shape (sphere, films, scaffold, etc.), morphology and inner structure (solid, hollow, core-shell, co-axial, etc.) can be selectively elaborated. This review provides an overview of the design of functional nanostructured materials, porous scaffolds and membranes by electrospinning and electrospraying techniques. Key experimental parameters and synthesis strategy are emphasized to reveal the synthesis-component-structure-property relationship and eventually realize the targeted functions through predictable synthesis. Potential applications in tissue engineering, medicine, membrane filtration and lithium battery are highlighted.


Assuntos
Portadores de Fármacos/química , Nanoestruturas/química , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
6.
ACS Appl Mater Interfaces ; 10(22): 19226-19234, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29745224

RESUMO

The structural stability of Li-rich layered oxide cathode materials is the ultimate frontier to allow the full development of these family of electrode materials. Here, first-principles calculations coupled with cluster expansion are presented to investigate the electrochemical activity of phase-separation, core-shell-structured xLi2MnO3·(1 - x)LiNiCoMnO2 nanocomposites. The detrimental surface effects of the core region can be countered by the Li2MnO3 shell, which stabilizes the nanocomposites. The operational voltage windows are accurately determined to avoid the electrochemical activation of the shell and the subsequent structural evolution. In particular, the dependence of the activation voltage with the shell thickness shows that relatively high voltages can still be obtained to meet the energy density needs of Li-ion battery applications. Finally, activation energies of Li migration at the core-shell interface must also be analyzed carefully to avoid the outbreak of a phase transformation, thus making the nanocomposites suitable from a structural viewpoint.

7.
Small ; 14(22): e1800780, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29717813

RESUMO

Phase engineering through chemical modification can significantly alter the properties of transition-metal dichalcogenides, and allow the design of many novel electronic, photonic, and optoelectronics devices. The atomic-scale mechanism underlying such phase engineering is still intensively investigated but elusive. Here, advanced electron microscopy, combined with density functional theory calculations, is used to understand the phase evolution (hexagonal 2H→monoclinic T'→orthorhombic Td ) in chemical vapor deposition grown Mo1-x W x Te2 nanostructures. Atomic-resolution imaging and electron diffraction indicate that Mo1-x W x Te2 nanostructures have two phases: the pure monoclinic phase in low W-concentrated (0 < x ≤ 10 at.%) samples, and the dual phase of the monoclinic and orthorhombic in high W-concentrated (10 < x < 90 at.%) samples. Such phase coexistence exists with coherent interfaces, mediated by a newly uncovered orthorhombic phase Td '. Td ', preserves the centrosymmetry of T' and provides the possible phase transition path for T'→Td with low energy state. This work enriches the atomic-scale understanding of phase evolution and coexistence in multinary compounds, and paves the way for device applications of new transition-metal dichalcogenides phases and heterostructures.

8.
ACS Appl Mater Interfaces ; 10(7): 6673-6680, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29363309

RESUMO

Advances in ex situ and in situ (operando) characteristic techniques have unraveled unprecedented atomic details in the electrochemical reaction of Li-ion batteries. To bridge the gap between emerging evidences and practical material development, an elaborate understanding on the electrochemical properties of cathode materials on the atomic scale is urgently needed. In this work, we perform comprehensive first-principle calculations within the density functional theory + U framework on the surface stability, morphology, and elastic anisotropy of Ni-rich LiNi1-2yCoyMnyO2 (NCM) (y ≤ 0.1) cathode materials, which are strongly related to the emerging evidence in the degradation of Li-ion batteries. On the basis of the surface stability results, the equilibrium particle morphology is obtained, which is mainly determined by the oxygen chemical potential. Ni-rich NCM particles are terminated mostly by the (012) and (001) surfaces for oxygen-poor conditions, whereas the termination corresponds to the (104) and (001) surfaces for oxygen-rich conditions. Besides, Ni surface segregation predominantly occurs on the (100), (110), and (104) nonpolar surfaces, showing a tendency to form a rocksalt NiO domain on the surface because of severe Li-Ni exchange. The observed elastic anisotropy reveals that an uneven deformation is more likely to be formed in the particles synthesized under poor-oxygen conditions, leading to crack generation and propagation. Our findings provide a deep understanding of the surface properties and degradation of Ni-rich NCM particles, thereby proposing possible solution mechanisms to the factors affecting degradation, such as synthesis conditions, coating, or novel nanostructures.

9.
J Phys Condens Matter ; 29(47): 475903, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29039739

RESUMO

To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO2. A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li2CoO2 and Li-deficient LiCo2O4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.

10.
Phys Chem Chem Phys ; 19(36): 24991-25001, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28876021

RESUMO

Transition metal (TM) modification is a common strategy for converting an earth-abundant mineral into a cost-effective catalyst for industrial applications. Among a variety of minerals, Al2SiO5, which has three phases, andalusite, sillimanite and kyanite, is emerging as a promising candidate for new catalyst development. In this paper, we use Mn to demonstrate the rationale of 3d TM doping at the Al sites in each of these three phases through first-principles calculations and the cluster expansion method. The results of cluster expansion show that Mn has a strong site preference for the six-coordinated Al octahedral chains in the andalusite and sillimanite phases, while distributing randomly in the kyanite phase. Moreover, Mn can only replace Al in sillimanite and kyanite in low concentrations; however, higher concentrations of Mn can replace Al in andalusite. We found that the concentration sensitivity is due to the Jahn-Teller distortion and 3d orbital splitting. This finding can also explain the low doping concentrations of other 3d TMs (Fe, Cr and V) in Al2SiO5 compounds. Based on the calculated Helmholtz free energy, we constructed a (MnxAl1-x)AlSiO5 temperature-composite phase diagram, which explains the physical mechanisms behind the results for 3d transition metal doping and phase transitions in Al2SiO5. This work could shed light on the related physics, chemistry, and geoscience of (MnxAl1-x)AlSiO5, and more importantly, a design rationale for the engineering of cheap catalysts.

11.
ACS Appl Mater Interfaces ; 9(33): 27657-27663, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28770605

RESUMO

Three benzene-arylamine hole-transporting materials (HTMs) with different numbers of terminal groups were prepared. It is noted that the molecule with three arms (H-Tri) shows a lower highest occupied molecular orbital level and a better film morphology on perovskite layer than the molecules with two or four arms (H-Di, H-Tetra). When these molecules were applied to the perovskite solar cells, the H-Tri-based one showed better performance compared with the H-Di- or H-Tetra-based ones. Photoluminescence and impedance spectroscopy demonstrate that H-Tri can improve the hole-electron separation efficiency and decrease the charge recombination, thus leading to a better performance. Moreover, the H-Tri-based device shows a comparable performance and a much less materials cost than the conventional spiro-OMeTAD. Therefore, we have presented a new low-cost and high-performance HTM through simple molecular engineering.

12.
Chem Commun (Camb) ; 53(69): 9558-9561, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28805216

RESUMO

Two arylamine-based hole transporting materials with an anthracene π-linker have been synthesized and tested for perovskite solar cells. Improved power conversion efficiency and stability were achieved by employing A102 compared with that of spiro-OMeTAD.

13.
ChemSusChem ; 10(5): 968-975, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-27976519

RESUMO

A new class of hole-transporting materials (HTM) containing tetraphenylmethane (TPM) core have been developed. After thermal, charge carrier mobility, and contact angle tests, it was found that TPA-TPM (TPA: arylamine derivates side group) showed higher glass-transition temperature and larger water-contact angle than spiro-OMeTAD with comparable hole mobility. Photoluminescence and impedance spectroscopy studies indicate that TPA-TPM's hole-extraction ability is comparable to that of spiro-OMeTAD. SEM and AFM results suggest that TPA-TPM has a smooth surface. When TPA-TPM is used in mesoscopic perovskite solar cells, power conversion efficiency comparable to that of spiro-OMeTAD is achieved. Notably, the perovskite solar cells employing TPA-TPM show better long-term stability than that of spiro-OMeTAD. Moreover, TPA-TPM can be prepared from relatively inexpensive raw materials with a facile synthetic route. The results demonstrate that TPM-arylamines are a new class of HTMs for efficient and stable perovskite solar cells.


Assuntos
Aminas/química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Metano/análogos & derivados , Óxidos/química , Energia Solar , Compostos de Terfenil/química , Titânio/química , Metano/química
14.
Nanoscale ; 8(46): 19383-19389, 2016 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-27845804

RESUMO

The rational design of semiconductor nanocrystals with well-defined surfaces is a crucial step towards the realization of next-generation photodetectors, and thermoelectric and spintronic devices. SnTe nanocrystals, as an example, are particularly attractive as a type of topological crystalline insulator, where surface facets determine their surface states. However, most of the available SnTe nanocrystals are dominated by thermodynamically stable {100} facets, and it is challenging to grow uniform nanocrystals with {111} facets. In this study, guided by surface-energy calculations, we employ a chemical vapour deposition approach to fabricate Bi doped SnTe nanostructures, in which their surface facets are tuned by Bi doping. The obtained Bi doped SnTe nanoribbons with distinct {111} surfaces show a weak antilocalization effect and linear magnetoresistance under high magnetic fields, which demonstrate their great potential for future spintronic applications.

15.
ACS Appl Mater Interfaces ; 8(30): 19410-7, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27409513

RESUMO

Three heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1). In conjunction with TiO2 photoanode of submicrospheres and iodide-based electrolytes, the DSSCs sensitizing with the RC sensitizers, achieved impressively high short-circuit current density (19.04 mA cm(-2) for RC-41, 19.83 mA cm(-2) for RC-42, and 20.21 mA cm(-2) for RC-43) and power conversion efficiency (10.07% for RC-41, 10.52% for RC-42, and 10.78% for RC-43). The superior performances of RC dye sensitizers were attributed to the enhanced light-harvesting capacity and incident-photon-to-current efficiency (IPCE) caused by the introduction of electron-donating antennas in the ancillary ligands. The interfacial charge recombination/regeneration kinetics and electron lifetime were further evaluated by the electrochemical impedance spectroscopy (EIS) and transient absorption spectroscopy (TAS). These data decisively revealed the dependences on the photovoltaic performance of ruthenium sensitizers incorporating electron-donating antennas.

16.
ACS Nano ; 10(8): 7370-5, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27415610

RESUMO

Metal-insulator transitions in low-dimensional materials under ambient conditions are rare and worth pursuing due to their intriguing physics and rich device applications. Monolayer MoTe2 and WTe2 are distinguished from other TMDs by the existence of an exceptional semimetallic distorted octahedral structure (T') with a quite small energy difference from the semiconducting H phase. In the process of transition metal alloying, an equal stability point of the H and the T' phase is observed in the formation energy diagram of monolayer WxMo1-xTe2. This thermodynamically driven phase transition enables a controlled synthesis of the desired phase (H or T') of monolayer WxMo1-xTe2 using a growth method such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). Furthermore, charge mediation, as a more feasible method, is found to make the T' phase more stable than the H phase and induce a phase transition from the H phase (semiconducting) to the T' phase (semimetallic) in monolayer WxMo1-xTe2 alloy. This suggests that a dynamic metal-insulator phase transition can be induced, which can be exploited for rich phase transition applications in two-dimensional nanoelectronics.

17.
Phys Chem Chem Phys ; 18(16): 11213-9, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27053153

RESUMO

Three heteroleptic ruthenium complexes, RC-15, RC-16 and RC-22, with sulfur- or oxygen-containing electron-donor, phenylpyridine-based ancillary ligands, are synthesized. The influence of the different electron donors-the acyclic electron donors methylthio and methoxyl, and the cyclic electron donor methylenedioxy-on the photophysical and electrochemical behavior in dye sensitizers and photovoltaic performance in DSSCs are investigated. Compared to the conventional dye N3, all the dyes demonstrate superior performance in the form of molar absorptivity, photocurrent density (J(SC)) and conversion efficiency (η). The DSSCs based on RC-15 and RC-16, with only a two-atom change in the acyclic electron donor, exhibit analogous photovoltaic performance (9.28% for RC-15 and 9.32% for RC-16). The highest photocurrent density (19.06 mA cm(-2)) and conversion efficiency (9.74%) are recorded for RC-22, which contains the cyclic electron donor. Transient absorption (TAS) and time-resolved photoluminescence (TRPL) measurements are carried out to investigate the sensitizers' regeneration and the behavior of excited electron decay kinetics. Furthermore, electrochemical impedance spectroscopy (EIS) is operated to explain the charge recombination and the electron lifetime. These consequences reveal substantial dependences on the different configurations of the electron-donor ancillary ligands.

18.
ACS Nano ; 10(5): 5507-15, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27116636

RESUMO

Vacancy engineering is a crucial approach to manipulate physical properties of semiconductors. Here, we demonstrate that planar vacancies are formed in Sn1-xBixTe nanoribbons by using Bi dopants via a facile chemical vapor deposition. Through combination of sub-angstrom-resolution imaging and density functional theory calculations, these planar vacancies are found to be associated with Bi segregations, which significantly lower their formation energies. The planar vacancies exhibit polymorphic structures with local variations in the lattice relaxation level, determined by their proximity to the nanoribbon surface. Such polymorphic planar vacancies, in conjunction with Bi dopants, trigger distinct localized electronic states, offering platforms for device applications of ternary chalcogenide materials.

19.
Dalton Trans ; 43(40): 14992-5003, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25010356

RESUMO

Novel ruthenium complexes (MC113-MC117), obtained by modifying the terpyridine ligand of the black dye (N749), have been evaluated as sensitizers for dye sensitized solar cells (DSSCs). The modification is carried out by attaching selected chromophores, with varying electron donating strength, covalently to the central ring of the ligand. The complexes, compared to the parent dye, show red shifted absorption covering visible and near IR regions and higher molar extinction coefficients. We report in this work synthesis of a series of these ruthenium complexes with chromophores such as tert-butyl phenyl, triphenylamine, bithiophene, phenoxazine and phenothiazine. Detailed experimental characterization using optical, electrochemical and photovoltaic techniques has been carried out and complemented by density functional theory studies. The fill factors (ff) obtained for these dyes are larger than those of the parent black dye. In spite of these superior properties, the dyes show only moderate to good power conversion efficiencies. The possible reasons for this have been investigated and discussed.

20.
J Phys Chem B ; 112(41): 12927-33, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18798664

RESUMO

Stable quasi-solid-state dye-sensitized solar cells (DSC) were fabricated using 12-hydroxystearic acid as a low molecular mass organogelator (LMOG) to form gel electrolyte. TEM image of the gel exhibited the self-assembled network constructed by the LMOG, which hindered flow and volatilization of the liquid. The formation of less-mobile polyiodide ions such as I 3 (-) and I 5 (-) confirmed by Raman spectroscopy increased the conductivity of the gel electrolytes by electronic conduction process, which should be rationalized by the Grotthuss-type electron exchange mechanism caused by rather packed polyiodide species in the electrolytes. The results of the accelerated aging tests showed that the gel electrolyte based dye-sensitized solar cell could retain over 97% of its initial photoelectric conversion efficiency value after successive heating at 60 degrees C for 1000 h and device degradation was also negligible after one sun light soaking with UV cutoff filter for 1000 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...