Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Psychopharmacol ; 38(1): 3-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37982394

RESUMO

Classic psychedelics, including lysergic acid diethylamide (LSD), psilocybin, mescaline, N,N-dimethyltryptamine (DMT) and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), are potent psychoactive substances that have been studied for their physiological and psychological effects. However, our understanding of the potential interactions and outcomes when using these substances in combination with other drugs is limited. This systematic review aims to provide a comprehensive overview of the current research on drug-drug interactions between classic psychedelics and other drugs in humans. We conducted a thorough literature search using multiple databases, including PubMed, PsycINFO, Web of Science and other sources to supplement our search for relevant studies. A total of 7102 records were screened, and studies involving human data describing potential interactions (as well as the lack thereof) between classic psychedelics and other drugs were included. In total, we identified 52 studies from 36 reports published before September 2, 2023, encompassing 32 studies on LSD, 10 on psilocybin, 4 on mescaline, 3 on DMT, 2 on 5-MeO-DMT and 1 on ayahuasca. These studies provide insights into the interactions between classic psychedelics and a range of drugs, including antidepressants, antipsychotics, anxiolytics, mood stabilisers, recreational drugs and others. The findings revealed various effects when psychedelics were combined with other drugs, including both attenuated and potentiated effects, as well as instances where no changes were observed. Except for a few case reports, no serious adverse drug events were described in the included studies. An in-depth discussion of the results is presented, along with an exploration of the potential molecular pathways that underlie the observed effects.


Assuntos
Alucinógenos , Humanos , Alucinógenos/efeitos adversos , Psilocibina , Mescalina , N,N-Dimetiltriptamina , Interações Medicamentosas , Dietilamida do Ácido Lisérgico
2.
Brain Behav Immun ; 116: 404-418, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142919

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder involving psychiatric, cognitive and motor deficits, as well as peripheral symptoms, including gastrointestinal dysfunction. The R6/1 HD mouse model expresses a mutant human huntingtin transgene and has been shown to provide an accurate disease model. Recent evidence of gut microbiome disruption was shown in preclinical and clinical HD. Therefore, we aimed to assess the potential role of gut microbial modulation in the treatment of HD. The R6/1 HD mice and wild-type littermate controls were randomised to receive diets containing different amounts of fibre: high-fibre (10 % fibre), control (5 % fibre), or zero-fibre (0 % fibre), from 6 to 20 weeks of age. We characterized the onset and progression of motor, cognitive and affective deficits, as well as gastrointestinal function and gut morphological changes. Faeces were collected for gut microbiome profiling using 16S rRNA sequencing, at 14 and 20 weeks of age. When compared to the control diet, high-fibre diet improved the performance of HD mice in behavioral tests of cognitive and affective function, as well as the gastrointestinal function of both HD and wild-type mice. While the diets changed the beta diversity of wild-type mice, no statistical significance was observed at 14 or 20 weeks of age within the HD mice. Analysis of Composition of Microbiomes with Bias Correction (ANCOM-BC) models were performed to evaluate microbiota composition, which identified differences, including a decreased relative abundance of the phyla Actinobacteriota, Campylobacterota and Proteobacteria and an increased relative abundance of the families Bacteroidaceae, Oscillospiraceae and Ruminococcaceae in HD mice when compared to wild-type mice after receiving high-fibre diet. PICRUSt2 revealed that high-fibre diet also decreased potentially pathogenic functional pathways in HD. In conclusion, high-fibre intake was effective in enhancing gastrointestinal function, cognition and affective behaviors in HD mice. These findings indicate that dietary fibre interventions may have therapeutic potential in Huntington's disease to delay clinical onset, and have implications for related disorders exhibiting dysfunction of the gut-brain axis.


Assuntos
Doença de Huntington , Humanos , Camundongos , Animais , Doença de Huntington/terapia , Doença de Huntington/genética , Camundongos Transgênicos , RNA Ribossômico 16S , Cognição , Modelos Animais de Doenças , Fibras na Dieta
3.
Hand Surg Rehabil ; 42(6): 475-481, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714514

RESUMO

OBJECTIVE: The double crush syndrome describes a condition characterized by multifocal entrapment of a nerve. In the upper limb, the high prevalence of carpal tunnel syndrome makes it a common diagnosis of assumption in the setting of median neuropathy. More proximal compressions may tend to be overlooked, under-diagnosed and under-treated in the population. This study aims to map the prevalence of peripheral upper limb nerve compressions among patients undergoing peripheral nerve decompression. METHODS: A prospective case series was conducted on 183 patients undergoing peripheral nerve decompression in a private hand surgery clinic. Level(s) of nerve compression in the median, ulnar and radial nerves were determined by history and physical examination. The prevalence of each nerve compression syndrome or combination of syndromes was analyzed. RESULTS: A total of 320 upper limbs in 183 patients were analyzed. A double crush of the median nerve at the levels of the lacertus fibrosus and carpal tunnel was identified in 78% of upper limbs with median neuropathy, whereas isolated lacertus syndrome and carpal tunnel syndrome were present in only 5% and 17% of affected limbs respectively. Cubital tunnel syndrome affected 12.5% of upper limbs, and 80% of these had concomitant lacertus and carpal tunnel syndromes, compared to only 7.5% with isolated cubital tunnel syndrome. CONCLUSION: A high prevalence should prompt clinicians towards more routine assessment for double crush syndrome to avoid misdiagnosis, inadequate treatment, recurrence, and revision surgeries.


Assuntos
Síndrome do Túnel Carpal , Síndrome de Esmagamento , Síndrome do Túnel Ulnar , Neuropatia Mediana , Humanos , Síndrome do Túnel Carpal/epidemiologia , Síndrome do Túnel Carpal/cirurgia , Síndrome do Túnel Ulnar/cirurgia , Prevalência , Síndrome de Esmagamento/epidemiologia , Síndrome de Esmagamento/cirurgia , Síndrome de Esmagamento/complicações , Nervo Mediano , Punho
4.
Methods Mol Biol ; 2687: 77-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464164

RESUMO

Mice and other rodent models have been widely used to understand the role of the gut microbiome in various neurological and psychiatric disorders. Here we describe a protocol to characterize the structural and functional phenotype of the rodent gut and to examine the gut microbiota composition through V4 16S rRNA gene sequencing and microbiome profiling. This protocol will have utility for those investigating the gut, and associated microbiota, in a wide range of different rodent models of human disorders.


Assuntos
Transtornos Mentais , Microbiota , Humanos , Camundongos , Animais , Roedores/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Trato Gastrointestinal , Transtornos Mentais/genética
5.
J Huntingtons Dis ; 12(1): 43-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005888

RESUMO

BACKGROUND: Gastrointestinal symptoms are clinical features of Huntington's disease (HD), which adversely affect people's quality of life. We recently reported the first evidence of gut dysbiosis in HD gene expansion carriers (HDGECs). Here, we report on a randomized controlled clinical trial of a 6-week probiotic intervention in HDGECs. OBJECTIVE: The primary objective was to determine whether probiotics improved gut microbiome composition in terms of richness, evenness, structure, and diversity of functional pathways and enzymes. Exploratory objectives were to determine whether probiotic supplementation improved cognition, mood, and gastrointestinal symptoms. METHODS: Forty-one HDGECs, including 19 early manifest and 22 premanifest HDGECs were compared with 36 matched-healthy controls (HCs). Participants were randomly assigned probiotics or placebo and provided fecal samples at baseline and 6-week follow-up, which were sequenced using 16S-V3-V4 rRNA to characterize the gut microbiome. Participants completed a battery of cognitive tests and self-report questionnaires measuring mood and gastrointestinal symptoms. RESULTS: HDGECs had altered gut microbiome diversity when compared to HCs, indicating gut dysbiosis. Probiotic intervention did not ameliorate gut dysbiosis or have any effect on cognition, mood, or gastrointestinal symptoms. Gut microbiome differences between HDGECs and HCs were unchanged across time points, suggesting consistency of gut microbiome differences within groups. CONCLUSION: Despite the lack of probiotic effects in this trial, the potential utility of the gut as a therapeutic target in HD should continue to be explored given the clinical symptomology, gut dysbiosis, and positive results from probiotics and other gut interventions in similar neurodegenerative diseases.


Assuntos
Doença de Huntington , Probióticos , Humanos , Doença de Huntington/terapia , Doença de Huntington/genética , Disbiose , Qualidade de Vida , Probióticos/uso terapêutico , Fezes
6.
STAR Protoc ; 3(4): 101772, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36313541

RESUMO

Fecal samples are frequently used to characterize bacterial populations of the gastrointestinal tract. A protocol is provided to profile gut bacterial populations using rodent fecal samples. We describe the optimal procedures for collecting rodent fecal samples, isolating genomic DNA, 16S rRNA gene V4 region sequencing, and bioinformatic analyses. This protocol includes detailed instructions and example outputs to ensure accurate, reproducible results and data visualization. Comprehensive troubleshooting and limitation sections address technical and statistical issues that may arise when profiling microbiota. For complete details on the use and execution of this protocol, please refer to Gubert et al. (2022).


Assuntos
Biologia Computacional , Microbiota , Animais , RNA Ribossômico 16S/genética , Roedores/genética , Bactérias/genética , DNA
7.
Brain Commun ; 4(4): fcac205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035436

RESUMO

Huntington's disease is a neurodegenerative disorder involving psychiatric, cognitive and motor symptoms. Huntington's disease is caused by a tandem-repeat expansion in the huntingtin gene, which is widely expressed throughout the brain and body, including the gastrointestinal system. There are currently no effective disease-modifying treatments available for this fatal disorder. Despite recent evidence of gut microbiome disruption in preclinical and clinical Huntington's disease, its potential as a target for therapeutic interventions has not been explored. The microbiota-gut-brain axis provides a potential pathway through which changes in the gut could modulate brain function, including cognition. We now show that faecal microbiota transplant (FMT) from wild-type into Huntington's disease mice positively modulates cognitive outcomes, particularly in females. In Huntington's disease male mice, we revealed an inefficiency of FMT engraftment, which is potentially due to the more pronounced changes in the structure, composition and instability of the gut microbial community, and the imbalance in acetate and gut immune profiles found in these mice. This study demonstrates a role for gut microbiome modulation in ameliorating cognitive deficits modelling dementia in Huntington's disease. Our findings pave the way for the development of future therapeutic approaches, including FMT and other forms of gut microbiome modulation, as potential clinical interventions for Huntington's disease.

8.
Microbiol Spectr ; 10(2): e0219221, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35262396

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a trinucleotide expansion in the HTT gene, which is expressed throughout the brain and body, including the gut epithelium and enteric nervous system. Afflicted individuals suffer from progressive impairments in motor, psychiatric, and cognitive faculties, as well as peripheral deficits, including the alteration of the gut microbiome. However, studies characterizing the gut microbiome in HD have focused entirely on the bacterial component, while the fungal community (mycobiome) has been overlooked. The gut mycobiome has gained recognition for its role in host homeostasis and maintenance of the gut epithelial barrier. We aimed to characterize the gut mycobiome profile in HD using fecal samples collected from the R6/1 transgenic mouse model (and wild-type littermate controls) from 4 to 12 weeks of age, corresponding to presymptomatic through to early disease stages. Shotgun sequencing was performed on fecal DNA samples, followed by metagenomic analyses. The HD gut mycobiome beta diversity was significantly different from that of wild-type littermates at 12 weeks of age, while no genotype differences were observed at the earlier time points. Similarly, greater alpha diversity was observed in the HD mice by 12 weeks of age. Key taxa, including Malassezia restricta, Yarrowia lipolytica, and Aspergillus species, were identified as having a negative association with HD. Furthermore, integration of the bacterial and fungal data sets at 12 weeks of age identified negative correlations between the HD-associated fungal species and Lactobacillus reuteri. These findings provide new insights into gut microbiome alterations in HD and may help identify novel therapeutic targets. IMPORTANCE Huntington's disease (HD) is a fatal neurodegenerative disorder affecting both the mind and body. We have recently discovered that gut bacteria are disrupted in HD. The present study provides the first evidence of an altered gut fungal community (mycobiome) in HD. The genomes of many thousands of gut microbes were sequenced and used to assess "metagenomics" in particular the different types of fungal species in the HD versus control gut, in a mouse model. At an early disease stage, before the onset of symptoms, the overall gut mycobiome structure (array of fungi) in HD mice was distinct from that of their wild-type littermates. Alterations of multiple key fungi species were identified as being associated with the onset of disease symptoms, some of which showed strong correlations with the gut bacterial community. This study highlights the potential role of gut fungi in HD and may facilitate the development of novel therapeutic approaches.


Assuntos
Microbioma Gastrointestinal , Doença de Huntington , Micobioma , Animais , Bactérias/genética , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Doença de Huntington/genética , Doença de Huntington/microbiologia , Metagenômica , Camundongos , Camundongos Transgênicos , Micobioma/genética
9.
FASEB J ; 36(1): e21981, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907601

RESUMO

The global consumption of highly processed, calorie-dense foods has contributed to an epidemic of overweight and obesity, along with negative consequences for metabolic dysfunction and disease susceptibility. As it becomes apparent that overweight and obesity have ripple effects through generations, understanding of the processes involved is required, in both maternal and paternal epigenetic inheritance. We focused on the patrilineal effects of a Western-style high-fat (21%) and high-sugar (34%) diet (WD) compared to control diet (CD) during adolescence and investigated F0 and F1 mice for physiological and behavioral changes. F0 males (fathers) showed increased body weight, impaired glycemic control, and decreased attractiveness to females. Paternal WD caused significant phenotypic changes in F1 offspring, including higher body weights of pups, increased Actinobacteria abundance in the gut microbiota (ascertained using 16S microbiome profiling), a food preference for WD pellets, increased male dominance and attractiveness to females, as well as decreased behavioral despair. These results collectively demonstrate the long-term intergenerational effects of a Western-style diet during paternal adolescence. The behavioral and physiological alterations in F1 offspring provide evidence of adaptive paternal programming via epigenetic inheritance. These findings have important implications for understanding paternally mediated intergenerational inheritance, and its relevance to offspring health and disease susceptibility.


Assuntos
Comportamento Animal , Dieta Ocidental , Microbioma Gastrointestinal , Herança Paterna , Comportamento Social , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos
10.
Mol Neurobiol ; 58(7): 3308-3318, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33675499

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin gene. Transcriptomic dysregulations are well-documented in HD and alterations in small non-coding RNAs (sncRNAs), particularly microRNAs (miRNAs), could underpin that phenomenon. Additionally, environmental enrichment (EE), which is used to model a stimulating lifestyle in pre-clinical research, has been shown to ameliorate HD-related symptoms. However, the mechanisms mediating the therapeutic effects of EE remain largely unknown. This study assessed the effect of EE on sncRNA expression in the striatum of female R6/1 transgenic HD mice at 12 weeks (prior to over motor deficits) and 20 weeks (fully symptomatic) of age. When comparing wild-type and R6/1 mice in the standard housing condition, we found 6 and 64 miRNAs that were differentially expressed at 12 and 20 weeks of age, respectively. The 6 miRNAs (miR-132, miR-212, miR-222, miR-1a, miR-467a, and miR-669c) were commonly dysregulated at both time points. Additionally, genotype had minor effects on the levels of other sncRNAs, in particular, 1 piRNA was dysregulated at 12 weeks of age, and at 20 weeks of age 11 piRNAs, 1 tRNA- and 2 snoRNA-derived fragments were altered in HD mice. No difference in the abundance of other sncRNA subtypes, including rRNA- and snRNA- derived fragments, were observed. While EE improved locomotor symptoms in HD, we found no effect of the housing condition on any of the sncRNA populations examined. Our findings show that HD mainly affects miRNAs and has a minor effect on other sncRNA populations. Furthermore, the therapeutic effects of EE are not associated with the rescue of these dysregulated sncRNAs and may therefore exert these experience-dependent effects via other molecular mechanisms.


Assuntos
Corpo Estriado/metabolismo , Meio Ambiente , Doença de Huntington/genética , Doença de Huntington/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Animais , Feminino , Doença de Huntington/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Atividade Motora/fisiologia , Resultado do Tratamento
11.
Am J Sports Med ; 49(12): 3422-3436, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33740393

RESUMO

BACKGROUND: Proximal fifth metatarsal fractures are among the most common forefoot injuries in athletes. The management of this injury can be challenging because of delayed union and refractures. Intramedullary (IM) screw fixation rather than nonoperative management has been recommended in the athletic population. PURPOSE: To provide an updated summary of the return-to-play (RTP) rate and time to RTP after Jones fractures in athletes with regard to their management, whether operative or nonoperative, and to explore the union rate and time to union as well as the rate of complications such as refractures. STUDY DESIGN: Meta-analysis. METHODS: Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, 2 independent team members searched several databases including PubMed, MEDLINE, Embase, Google Scholar, Web of Science, Cochrane Library, and ClinicalTrials.gov through November 2019 to identify studies reporting on Jones fractures of the fifth metatarsal exclusively in athletes. The primary outcomes were the RTP rate and time to RTP, whereas the secondary outcomes were the number of games missed, time to union, and union rate as well as the rates of nonunion, delayed union, and refractures. RESULTS: Of 168 studies identified, 22 studies were eligible for meta-analysis with a total of 646 Jones fractures. The overall RTP rate was 98.4% (95% CI, 97.3%-99.4%) in 626 of 646 Jones fractures. The RTP rate with IM screw fixation only was 98.8% (95% CI, 97.8%-99.7%), with other surgical fixation methods (plate, Minifix) was 98.4% (95% CI, 95.8%-100.0%), and with nonoperative management was 71.6% (95% CI, 45.6%-97.6%). There were 3 studies directly comparing RTP rates with surgical versus nonoperative management, which showed significant superiority in favor of surgery (odds ratio, 0.033 [95% CI, 0.005-0.215]; P < .001). The RTP rate according to type of sport was 99.0% (95% CI, 97.5%-100.0%) in football, 91.1% (95% CI, 82.2%-99.4%) in basketball, and 96.6% (95% CI, 92.6%-100.0%) in soccer. The overall time to RTP was 9.6 weeks (95% CI, 8.5-10.7 weeks). The time to RTP in the surgical group (IM screw fixation) was 9.6 weeks (95% CI, 8.3-10.9 weeks), which was significantly less than that in the nonoperative group of 13.1 weeks (95% CI, 8.2-18.0 weeks). The pooled union rate in the operative group (excluding refractures) was 97.3% (95% CI, 95.1%-99.4%), whereas the pooled union rate in the nonoperative group was 71.4% (95% CI, 49.1%-93.7%). The overall time to union was 9.1 weeks (95% CI, 7.7-10.4 weeks). The time to union with IM screw fixation (8.2 weeks [95% CI, 7.5-9.0 weeks]) was shorter than that with nonoperative treatment (13.7 weeks [95% CI, 12.7-14.6 weeks]). The rate of delayed union was 2.5% (95% CI, 1.2%-3.7%), and the overall refracture rate was 10.2% (95% CI, 5.9%-14.5%). CONCLUSION: The RTP rate and time to RTP after the surgical management of Jones fractures in athletes were excellent, regardless of the implant used and type of sport. IM screw fixation was superior to nonoperative management, as it led to a higher rate of RTP, shorter time to RTP, higher rate of union, shorter time to union, and improved functional outcomes. We recommend surgical fixation for all Jones fractures in athletes.


Assuntos
Fraturas Ósseas , Ossos do Metatarso , Atletas , Fraturas Ósseas/cirurgia , Humanos , Ossos do Metatarso/cirurgia , Estudos Retrospectivos , Volta ao Esporte
12.
Neurobiol Dis ; 148: 105199, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249136

RESUMO

BACKGROUND: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder with onset and severity of symptoms influenced by various environmental factors. Recent discoveries have highlighted the importance of the gastrointestinal microbiome in mediating the gut-brain-axis bidirectional communication via circulating factors. Using shotgun sequencing, we investigated the gut microbiome composition in the R6/1 transgenic mouse model of HD from 4 to 12 weeks of age (early adolescent through to adult stages). Targeted metabolomics was also performed on the blood plasma of these mice (n = 9 per group) at 12 weeks of age to investigate potential effects of gut dysbiosis on the plasma metabolome profile. RESULTS: Modelled time profiles of each species, KEGG Orthologs and bacterial genes, revealed heightened volatility in the R6/1 mice, indicating potential early effects of the HD mutation in the gut. In addition to gut dysbiosis in R6/1 mice at 12 weeks of age, gut microbiome function was perturbed. In particular, the butanoate metabolism pathway was elevated, suggesting increased production of the protective SCFA, butyrate, in the gut. No significant alterations were found in the plasma butyrate and propionate levels in the R6/1 mice at 12 weeks of age. The statistical integration of the metagenomics and metabolomics unraveled several Bacteroides species that were negatively correlated with ATP and pipecolic acid in the plasma. CONCLUSIONS: The present study revealed the instability of the HD gut microbiome during the pre-motor symptomatic stage of the disease which may have dire consequences on the host's health. Perturbation of the HD gut microbiome function prior to significant cognitive and motor dysfunction suggest the potential role of the gut in modulating the pathogenesis of HD, potentially via specific altered plasma metabolites which mediate gut-brain signaling.


Assuntos
Doenças Assintomáticas , Encéfalo/metabolismo , Disbiose/metabolismo , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/metabolismo , Doença de Huntington/metabolismo , Metabolômica , Metagenômica , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Progressão da Doença , Disbiose/microbiologia , Ácidos Graxos Voláteis/metabolismo , Trato Gastrointestinal/microbiologia , Doença de Huntington/microbiologia , Espectrometria de Massas , Camundongos , Camundongos Transgênicos
13.
Front Cell Dev Biol ; 8: 582320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195226

RESUMO

Schizophrenia (SZ) is a psychiatric disorder that constitutes one of the top 10 global causes of disability. More recently, a potential pathogenic role for the gut microbial community (microbiota) has been highlighted, with numerous studies describing dysregulated microbial profiles in SZ patients when compared to healthy controls. However, no animal model of SZ has previously recapitulated the gut dysbiosis observed clinically. Since the metabotropic glutamate receptor 5 (mGlu5) knockout mice provide a preclinical model of SZ with strong face and predictive validity, in the present study we performed gut microbiome profiling of mGlu5 knockout (KO) and wild-type (WT) mice by 16S rRNA sequencing of bacterial genomic DNA from fecal samples, analyzing bacterial diversity and taxonomic composition, as well as gastrointestinal parameters as indicators of gut function. We found a significant genotype difference in microbial beta diversity. Analysis of composition of microbiomes (ANCOM) models were performed to evaluate microbiota compositions, which identified a decreased relative abundance of the Erysipelotrichaceae family and Allobaculum genus in this mouse model of SZ. We also identified a signature of bacteria discriminating between the genotypes (KO and WT), consisting of the Erysipelotrichales, Bacteroidales, and Clostridiales orders and macroscopic gut differences. We thus uncovered global differential community composition in the gut microbiota profile between mGlu5 KO and WT mice, outlining the first evidence for gut dysbiosis in a genetic animal model of SZ. Our findings suggest that this widely used preclinical model of SZ also has substantial utility for investigations of gut dysbiosis and associated signaling via the microbiota-gut-brain axis, as potential modulators of SZ pathogenesis. Our discovery opens up new avenues to explore gut dysbiosis and its proposed links to brain dysfunction in SZ, as well as novel therapeutic approaches to this devastating disorder.

14.
Brain Commun ; 2(2): fcaa110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005892

RESUMO

Huntington's disease is characterized by a triad of motor, cognitive and psychiatric impairments, as well as unintended weight loss. Although much of the research has focused on cognitive, motor and psychiatric symptoms, the extent of peripheral pathology and the relationship between these factors, and the core symptoms of Huntington's disease, are relatively unknown. Gut microbiota are key modulators of communication between the brain and gut, and alterations in microbiota composition (dysbiosis) can negatively affect cognition, behaviour and affective function, and may be implicated in disease progression. Furthermore, gut dysbiosis was recently reported in Huntington's disease transgenic mice. Our main objective was to characterize the gut microbiome in people with Huntington's disease and determine whether the composition of gut microbiota are significantly related to clinical indicators of disease progression. We compared 42 Huntington's disease gene expansion carriers, including 19 people who were diagnosed with Huntington's disease (Total Functional Capacity > 6) and 23 in the premanifest stage, with 36 age- and gender-matched healthy controls. Participants were characterized clinically using a battery of cognitive tests and using results from 16S V3 to V4 rRNA sequencing of faecal samples to characterize the gut microbiome. For gut microbiome measures, we found significant differences in the microbial communities (beta diversity) based on unweighted UniFrac distance (P = 0.001), as well as significantly lower alpha diversity (species richness and evenness) between our combined Huntington's disease gene expansion carrier group and healthy controls (P = 0.001). We also found major shifts in the microbial community structure at Phylum and Family levels, and identified functional pathways and enzymes affected in our Huntington's disease gene expansion carrier group. Within the Huntington's disease gene expansion carrier group, we also discovered associations among gut bacteria, cognitive performance and clinical outcomes. Overall, our findings suggest an altered gut microbiome in Huntington's disease gene expansion carriers. These results highlight the importance of gut biomarkers and raise interesting questions regarding the role of the gut in Huntington's disease, and whether it may be a potential target for future therapeutic intervention.

15.
Neurobiol Dis ; 135: 104268, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30194046

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin (HTT) gene, which is expressed ubiquitously throughout the brain and peripheral tissues. Whilst the focus of much research has been on the cognitive, psychiatric and motor symptoms of HD, the extent of peripheral pathology and its potential impact on central symptoms has been less intensely explored. Disruption of the gastrointestinal microbiome (gut dysbiosis) has been recently reported in a number of neurological and psychiatric disorders, and therefore we hypothesized that it might also occur in HD. We have used 16S rRNA amplicon sequencing to characterize the gut microbiome in the R6/1 transgenic mouse model of HD, relative to littermate wild-type controls. We report that there is a significant difference in microbiota composition in HD mice at 12 weeks of age. Specifically, we observed an increase in Bacteriodetes and a proportional decrease in Firmicutes in the HD gut microbiome. In addition, we observed an increase in microbial diversity in male HD mice, compared to wild-type controls, but no differences in diversity were observed in female HD mice. The gut dysbiosis observed coincided with impairment in body weight gain despite higher food intake as well as motor deficits at 12 weeks of age. Gut dysbiosis was also associated with a change in the gut microenvironment, as we observed higher fecal water content in HD mice at 12 weeks of age. This study provides the first evidence of gut dysbiosis in HD.


Assuntos
Encéfalo/metabolismo , Disbiose/genética , Microbioma Gastrointestinal/genética , Doença de Huntington/genética , Animais , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Camundongos Transgênicos , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
16.
Neurobiol Dis ; 134: 104621, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31628992

RESUMO

The last decade has witnessed an exponentially growing interest in gut microbiota and the gut-brain axis in health and disease. Accumulating evidence from preclinical and clinical research indicate that gut microbiota, and their associated microbiomes, may influence pathogenic processes and thus the onset and progression of various diseases, including neurological and psychiatric disorders. In fact, gut dysbiosis (microbiota dysregulation) has been associated with a range of neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and motor neuron disease, as well as multiple sclerosis. The gut microbiota constitutes a dynamic microbial system constantly challenged by many biological variables, including environmental factors. Since the gut microbiota constitute a changeable and experience-dependent ecosystem, they provide potential therapeutic targets that can be modulated as new interventions for dysbiosis-related disorders, including neurodegenerative diseases. This article reviews the evidence for environmental modulation of gut microbiota and its relevance to brain disorders, exploring in particular the implications for neurodegenerative diseases. We will focus on three major environmental factors that are known to influence the onset and progression of those diseases, namely exercise, diet and stress. Further exploration of environmental modulation, acting via both peripheral (e.g. gut microbiota and associated metabolic dysfunction or 'metabolopathy') and central (e.g. direct effects on CNS neurons and glia) mechanisms, may lead to the development of novel therapeutic approaches, such as enviromimetics, for a wide range of neurological and psychiatric disorders.


Assuntos
Dieta , Exercício Físico , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Estresse Psicológico , Animais , Disbiose , Humanos , Doenças Neurodegenerativas/microbiologia , Doenças Neurodegenerativas/fisiopatologia
17.
Eur J Med Chem ; 120: 275-83, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27208658

RESUMO

BACKGROUND & AIMS: The availability of non-tumorigenic and tumorigenic liver progenitor cell (LPC) lines affords a method to screen putative anti-liver cancer agents to identify those that are selectively effective. To prove this principle we tested thalidomide and a range of its derivatives and compared them to lenalidomide and sorafenib, to assess their growth-inhibitory effects. METHODS: Cell growth, the mitotic and apoptotic index of cell cultures were measured using the Cellavista instrument (SynenTec) using commercially available reagents. RESULTS: Neither lenalidomide nor thalidomide (100 µM) affected tumorigenic LPCs but killed their non-tumorigenic counterparts. Sorafenib arrested growth in both cell types. All but two derivatives of thalidomide were ineffective; of the two effective derivatives, one (thalidomide C1) specifically affected the tumorigenic cell line (10 µM). Mitotic and apoptotic analyses revealed that thalidomide C1 induced apoptotic cell death and not mitotic arrest. CONCLUSIONS: This study shows that screens incorporating non-tumorigenic and tumorigenic liver cell lines are a sound approach to identify agents that are effective and selective. A high throughput instrument such as the Cellavista affords robust and reproducible objective measurements with a large number of replicates that are reliable. These experiments show that neither lenalidomide nor thalidomide are potentially useful for anti-liver cancer therapy as they kill non-tumorigenic liver cells and not their tumorigenic counterparts. Sorafenib in contrast, is highly effective, but not selective. One tested thalidomide derivative has potential as an anti-tumor drug since it induced growth arrest; and importantly, it selectively induced apoptotic cell death only in tumorigenic liver progenitor cells.


Assuntos
Neoplasias Hepáticas/tratamento farmacológico , Células-Tronco/efeitos dos fármacos , Talidomida/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Lenalidomida , Neoplasias Hepáticas/patologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Sorafenibe , Células-Tronco/patologia , Talidomida/análogos & derivados
18.
J Cell Biol ; 210(4): 529-39, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26283796

RESUMO

Prion-like domains (PLDs) are low complexity sequences found in RNA binding proteins associated with the neurodegenerative disorder amyotrophic lateral sclerosis. Recently, PLDs have been implicated in mediating gene regulation via liquid-phase transitions that drive ribonucleoprotein granule assembly. In this paper, we report many PLDs in proteins associated with paraspeckles, subnuclear bodies that form around long noncoding RNA. We mapped the interactome network of paraspeckle proteins, finding enrichment of PLDs. We show that one protein, RBM14, connects key paraspeckle subcomplexes via interactions mediated by its PLD. We further show that the RBM14 PLD, as well as the PLD of another essential paraspeckle protein, FUS, is required to rescue paraspeckle formation in cells in which their endogenous counterpart has been knocked down. Similar to FUS, the RBM14 PLD also forms hydrogels with amyloid-like properties. These results suggest a role for PLD-mediated liquid-phase transitions in paraspeckle formation, highlighting this nuclear body as an excellent model system for understanding the perturbation of such processes in neurodegeneration.


Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Príons/química , Proteínas de Ligação a RNA/química , Proteínas Amiloidogênicas/química , Células HeLa , Humanos , Hidrogéis/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Príons/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Proteínas de Ligação a RNA/metabolismo
19.
J Cell Mol Med ; 18(8): 1644-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24974908

RESUMO

We investigated global and regional effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) in infarcted myocardium. Acute myocardial infarction (MI) was induced by ligation of left coronary artery of severe combined immunodeficient mice before 2 × 10(5) iMSCs or cell-free saline were injected into peri-infarcted anterior free wall. Sham-operated animals received no injection. Global and regional myocardial function was assessed serially at 1-week and 8-week by segmental strain analysis by using two dimensional (2D) speckle tracking echocardiography. Early myocardial remodelling was observed at 1-week and persisted to 8-week with global contractility of ejection fraction and fractional area change in saline- (32.96 ± 14.23%; 21.50 ± 10.07%) and iMSC-injected (32.95 ± 10.31%; 21.00 ± 7.11%) groups significantly depressed as compared to sham control (51.17 ± 11.69%, P < 0.05; 34.86 ± 9.82%, P < 0.05). However, myocardial dilatation was observed in saline-injected animals (4.40 ± 0.62 mm, P < 0.05), but not iMSCs (4.29 ± 0.57 mm), when compared to sham control (3.74 ± 0.32 mm). Furthermore, strain analysis showed significant improved basal anterior wall strain (28.86 ± 8.16%, P < 0.05) in the iMSC group, but not saline-injected (15.81 ± 13.92%), when compared to sham control (22.18 ± 4.13%). This was corroborated by multi-segments deterioration of radial strain only in saline-injected (21.50 ± 5.31%, P < 0.05), but not iMSC (25.67 ± 12.53%), when compared to sham control (34.88 ± 5.77%). Improvements of the myocardial strain coincided with the presence of interconnecting telocytes in interstitial space of the infarcted anterior segment of the heart. Our results show that localized injection of iMSCs alleviates ventricular remodelling, sustains global and regional myocardial strain by paracrine-driven effect on neoangiogenesis and myocardial deformation/compliance via parenchymal and interstitial cell interactions in the infarcted myocardium.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Remodelação Ventricular/fisiologia , Animais , Modelos Animais de Doenças , Ecocardiografia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos SCID , Infarto do Miocárdio/diagnóstico por imagem
20.
Cytotherapy ; 15(11): 1395-405, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23992829

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) is an endogenously generated gaseous transmitter known for its cytoprotective effect mediated by the PI3K-Akt signaling pathway. Human induced pluripotent stem cell (hiPSC)-derived mesenchymal stromal cells (MSCs), or hiPSC-MSCs, represent an alternative source of MSCs for autologous cell therapy. The big-conductance Ca(2+)-activated outward K(+) currents (BKCa), known to mediate cell proliferation, have been detected in >80% of hiPSC-MSCs. The present study aimed to explore the effect of H2S on survival and proliferation of hiPSC-MSCs and investigate the mediatory role of BKCa. METHODS: Effects of H2S on proliferation and survival of hiPSC-MSCs were measured by 5-bromo-2-deoxyuridine incorporation, population doubling and cell cycle assays, and by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide assay and 4'-6-diamidino-2-phenylindole staining, respectively. BKCa was recorded by means of the whole-cell patch-clamp technique. The expressions of KCa 1.1 (encoding BKCa) and apoptosis-related genes were measured by reverse transcriptase-polymerase chain reaction. The phosphorylation of Akt was assessed by Western blot analysis. RESULTS: Exogenously administered NaHS (an H2S donor, 50-300 µmol/L) significantly promoted proliferation of hiPSC-MSCs. NaHS prevented the hypoxia-induced apoptosis and suppressed BKCa currents without altering the expression levels of α- and ß-KCa 1.1. In addition, NaHS increased the phosphorylation of Akt and decreased the expression of Caspase 8 and Bax in hiPSC-MSCs. Paxilline (1 µmol/L), a BKCa blocker, showed similar effects on promoting cell proliferation and phosphorylation of Akt and suppression of apoptotic genes in hiPSC-MSCs. CONCLUSIONS: Our data confirmed that H2S arguments the proliferation and survival of hiPSC-MSCs through activation of the PI3K-Akt pathway and that such effects could be mediated through inhibition of BKCa.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Caspase 8/biossíntese , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Indóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...